DOI QR코드

DOI QR Code

Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin

  • Kim, Ji-Sun (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Jeong, Ji-Ho (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Yongae (Department of Chemistry, Hankuk University of Foreign Studies)
  • Received : 2016.09.06
  • Accepted : 2017.01.19
  • Published : 2017.04.28

Abstract

Lactophoricin (LPcin), which is a part of proteose peptone isolated from bovine milk, is a cationic amphipathic ${\alpha}-helical$ antimicrobial peptide. Its truncated variants and mutated analogs were designed and their antimicrobial activities were evaluated by using various assays, like broth dilution methods and disk diffusion methods as well as hemolysis assay. Three analogs, LPcin-C8 (LPcin-YK1), LPcin-T2&6W (LPcin-YK2), and LPcin-T2&6W-C8 (LPcin-YK3), which showed better antibiotic activities than LPcin, were selected. Their secondary structures were also characterized by using CD spectropolarimetry. These three analogs of LPcin could be used as an alternative source of powerful antibacterial agents.

Keywords

References

  1. Hancock REW. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1: 156-164. https://doi.org/10.1016/S1473-3099(01)00092-5
  2. Joerger RD. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647. https://doi.org/10.1093/ps/82.4.640
  3. Brad P. 2013. Washington Post. Available from https://www.washingtonpost.com/news/wonk/wp/2013/12/14/the-fda-is-cracking-down-on-antibiotics-at-farms-heres-what-you-should-know/. Accessed December 14, 2013.
  4. Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F. 2012. Natural antimicrobial peptides from bacteria:characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 113: 723-736. https://doi.org/10.1111/j.1365-2672.2012.05338.x
  5. Brown KL, Hancock REW. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24-30. https://doi.org/10.1016/j.coi.2005.11.004
  6. Friedrich CL, Moyles D, Beveridge TJ, Hancock REW. 2000. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44: 2086-2092. https://doi.org/10.1128/AAC.44.8.2086-2092.2000
  7. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. 1985. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76: 1427-1435. https://doi.org/10.1172/JCI112120
  8. Hancock REW, Diamond G. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8: 402-410. https://doi.org/10.1016/S0966-842X(00)01823-0
  9. Filipovica N, Borrmannb H, Todorovicc T, Borna M, Spasojevicd V, Sladicc D, et al. 2009. Copper(II) complexes of N-heteroaromatic hydrazones: synthesis, X-ray structure, magnetic behavior, and antibacterial activity. Inorg. Chim. Acta 362: 1996-2000. https://doi.org/10.1016/j.ica.2008.09.019
  10. Hancock REW, Rozek A. 2002. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 206: 143-149. https://doi.org/10.1111/j.1574-6968.2002.tb11000.x
  11. Bulet P, Stocklin R, Menin L. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198: 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
  12. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. https://doi.org/10.1038/292246a0
  13. Andreu D, Rivas L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47: 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  14. Huang HW. 2000. Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347-8352. https://doi.org/10.1021/bi000946l
  15. Matsuzaki K, Sugishita K, Fujii N, Miyajima K. 1995. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34: 3423-3429. https://doi.org/10.1021/bi00010a034
  16. Papagianni M. 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol. Adv. 21: 465-499. https://doi.org/10.1016/S0734-9750(03)00077-6
  17. Zhang L, Rozek A, Hancock REW. 2001. Interaction of cationic peptides with model membranes. J. Biol. Chem. 276: 35714-35722. https://doi.org/10.1074/jbc.M104925200
  18. Mohammad FV, Noorwala M, Ahmad VU, Sener B. 1995. Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale. Planta Med. 61: 94.
  19. Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD. 1994. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun. 62: 5397-5403.
  20. Campagna S, Mathot AG, Fleury Y, Girardet JM, Gaillard JL. 2004. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone. J. Dairy Sci. 87: 1621-1626. https://doi.org/10.3168/jds.S0022-0302(04)73316-0
  21. Gor'kov PL, Chekmenev EY, Li C, Cotten M, Buffy Jarrod J, Traaseth Nathaniel J, et al. 2007. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J. Magn. Reson. 185: 77-93. https://doi.org/10.1016/j.jmr.2006.11.008
  22. Park TJ, Kim JS, Choi SS, Kim Y. 2009. Cloning expression, isotope labeling, purification and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr. Purif. 65: 23-29. https://doi.org/10.1016/j.pep.2008.12.009
  23. Park TJ, Kim JS, Ahn HC, Kim Y. 2011. Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys. J. 101: 1193-1201. https://doi.org/10.1016/j.bpj.2011.06.067
  24. Bechinger B. 1997. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197-211. https://doi.org/10.1007/s002329900201
  25. Hancock REW, Lehrer R. 1998. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16: 82-88. https://doi.org/10.1016/S0167-7799(97)01156-6
  26. Fjell CD, Hiss JA, Hancock REW, Schneider G. 2012. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51. https://doi.org/10.1038/nrd3591
  27. Tossi A, Tarantino C, Romeo D. 1997. Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur. J. Biochem. 250: 549-558. https://doi.org/10.1111/j.1432-1033.1997.0549a.x
  28. Wu G, Ding J, Li H, Li L, Zhao R, Shen Z, et al. 2008. Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Curr. Microbiol. 57: 552-557. https://doi.org/10.1007/s00284-008-9241-6
  29. Kim JS, Jeong JH, Kim KS, Kim Y. 2015. Optimized expression and characterization of antimicrobial peptides, LPcin analogs. Bull. Korean Chem. Soc. 36: 1148-1154. https://doi.org/10.1002/bkcs.10213
  30. Mishra B, Basu A, Chua RRY, Saravanan R, Tambyah PA, Ho B, et al. 2014. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens. J. Mater. Chem. B 2: 1706-1716. https://doi.org/10.1039/c3tb21300e
  31. Greenfield NJ. 2006. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1: 2876-2890.
  32. Gallo RL, Murakami M, Ohtake T, Zaiou M. 2002. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110: 823-831. https://doi.org/10.1067/mai.2002.129801
  33. Hancock REW, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557. https://doi.org/10.1038/nbt1267
  34. Tossi A, Sandri L, Giangaspero A. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  35. Jeong JH, Kim JS, Choi SS, Kim Y. 2016. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys. J. 110: 423-430. https://doi.org/10.1016/j.bpj.2015.12.006

Cited by

  1. Design and Engineering of Antimicrobial Peptides Based on LPcin-YK3, an Antimicrobial Peptide Derivative from Bovine Milk vol.28, pp.3, 2018, https://doi.org/10.4014/jmb.1711.11057
  2. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice vol.8, pp.None, 2017, https://doi.org/10.1038/s41598-018-32981-3
  3. From Antimicrobial to Anticancer Peptides: The Transformation of Peptides vol.14, pp.1, 2017, https://doi.org/10.2174/1574892814666190119165157
  4. Identification of microbial life in sustainable and disease suppressive growing media: the role of beneficial microorganisms vol.1305, pp.None, 2021, https://doi.org/10.17660/actahortic.2021.1305.17
  5. Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications vol.196, pp.None, 2017, https://doi.org/10.1016/j.ijbiomac.2021.12.033