References
- Hancock REW. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1: 156-164. https://doi.org/10.1016/S1473-3099(01)00092-5
- Joerger RD. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647. https://doi.org/10.1093/ps/82.4.640
- Brad P. 2013. Washington Post. Available from https://www.washingtonpost.com/news/wonk/wp/2013/12/14/the-fda-is-cracking-down-on-antibiotics-at-farms-heres-what-you-should-know/. Accessed December 14, 2013.
- Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F. 2012. Natural antimicrobial peptides from bacteria:characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 113: 723-736. https://doi.org/10.1111/j.1365-2672.2012.05338.x
- Brown KL, Hancock REW. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24-30. https://doi.org/10.1016/j.coi.2005.11.004
- Friedrich CL, Moyles D, Beveridge TJ, Hancock REW. 2000. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44: 2086-2092. https://doi.org/10.1128/AAC.44.8.2086-2092.2000
- Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. 1985. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76: 1427-1435. https://doi.org/10.1172/JCI112120
- Hancock REW, Diamond G. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8: 402-410. https://doi.org/10.1016/S0966-842X(00)01823-0
- Filipovica N, Borrmannb H, Todorovicc T, Borna M, Spasojevicd V, Sladicc D, et al. 2009. Copper(II) complexes of N-heteroaromatic hydrazones: synthesis, X-ray structure, magnetic behavior, and antibacterial activity. Inorg. Chim. Acta 362: 1996-2000. https://doi.org/10.1016/j.ica.2008.09.019
- Hancock REW, Rozek A. 2002. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 206: 143-149. https://doi.org/10.1111/j.1574-6968.2002.tb11000.x
- Bulet P, Stocklin R, Menin L. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198: 169-184. https://doi.org/10.1111/j.0105-2896.2004.0124.x
- Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. https://doi.org/10.1038/292246a0
- Andreu D, Rivas L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47: 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
- Huang HW. 2000. Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347-8352. https://doi.org/10.1021/bi000946l
- Matsuzaki K, Sugishita K, Fujii N, Miyajima K. 1995. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34: 3423-3429. https://doi.org/10.1021/bi00010a034
- Papagianni M. 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol. Adv. 21: 465-499. https://doi.org/10.1016/S0734-9750(03)00077-6
- Zhang L, Rozek A, Hancock REW. 2001. Interaction of cationic peptides with model membranes. J. Biol. Chem. 276: 35714-35722. https://doi.org/10.1074/jbc.M104925200
- Mohammad FV, Noorwala M, Ahmad VU, Sener B. 1995. Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale. Planta Med. 61: 94.
- Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD. 1994. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun. 62: 5397-5403.
- Campagna S, Mathot AG, Fleury Y, Girardet JM, Gaillard JL. 2004. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone. J. Dairy Sci. 87: 1621-1626. https://doi.org/10.3168/jds.S0022-0302(04)73316-0
- Gor'kov PL, Chekmenev EY, Li C, Cotten M, Buffy Jarrod J, Traaseth Nathaniel J, et al. 2007. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J. Magn. Reson. 185: 77-93. https://doi.org/10.1016/j.jmr.2006.11.008
- Park TJ, Kim JS, Choi SS, Kim Y. 2009. Cloning expression, isotope labeling, purification and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr. Purif. 65: 23-29. https://doi.org/10.1016/j.pep.2008.12.009
- Park TJ, Kim JS, Ahn HC, Kim Y. 2011. Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys. J. 101: 1193-1201. https://doi.org/10.1016/j.bpj.2011.06.067
- Bechinger B. 1997. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197-211. https://doi.org/10.1007/s002329900201
- Hancock REW, Lehrer R. 1998. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16: 82-88. https://doi.org/10.1016/S0167-7799(97)01156-6
- Fjell CD, Hiss JA, Hancock REW, Schneider G. 2012. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51. https://doi.org/10.1038/nrd3591
- Tossi A, Tarantino C, Romeo D. 1997. Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur. J. Biochem. 250: 549-558. https://doi.org/10.1111/j.1432-1033.1997.0549a.x
- Wu G, Ding J, Li H, Li L, Zhao R, Shen Z, et al. 2008. Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Curr. Microbiol. 57: 552-557. https://doi.org/10.1007/s00284-008-9241-6
- Kim JS, Jeong JH, Kim KS, Kim Y. 2015. Optimized expression and characterization of antimicrobial peptides, LPcin analogs. Bull. Korean Chem. Soc. 36: 1148-1154. https://doi.org/10.1002/bkcs.10213
- Mishra B, Basu A, Chua RRY, Saravanan R, Tambyah PA, Ho B, et al. 2014. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens. J. Mater. Chem. B 2: 1706-1716. https://doi.org/10.1039/c3tb21300e
- Greenfield NJ. 2006. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1: 2876-2890.
- Gallo RL, Murakami M, Ohtake T, Zaiou M. 2002. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110: 823-831. https://doi.org/10.1067/mai.2002.129801
- Hancock REW, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557. https://doi.org/10.1038/nbt1267
- Tossi A, Sandri L, Giangaspero A. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
- Jeong JH, Kim JS, Choi SS, Kim Y. 2016. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys. J. 110: 423-430. https://doi.org/10.1016/j.bpj.2015.12.006
Cited by
- Design and Engineering of Antimicrobial Peptides Based on LPcin-YK3, an Antimicrobial Peptide Derivative from Bovine Milk vol.28, pp.3, 2018, https://doi.org/10.4014/jmb.1711.11057
- An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice vol.8, pp.None, 2017, https://doi.org/10.1038/s41598-018-32981-3
- From Antimicrobial to Anticancer Peptides: The Transformation of Peptides vol.14, pp.1, 2017, https://doi.org/10.2174/1574892814666190119165157
- Identification of microbial life in sustainable and disease suppressive growing media: the role of beneficial microorganisms vol.1305, pp.None, 2021, https://doi.org/10.17660/actahortic.2021.1305.17
- Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications vol.196, pp.None, 2017, https://doi.org/10.1016/j.ijbiomac.2021.12.033