References
- M. Wu, Y. He, J.-H. She and H.-P. Liu, "Delay-dependent criteria for robust stability of time-varying delay system", Automatica, vol. 40, no. 8, pp. 1435-1439, 2004. https://doi.org/10.1016/j.automatica.2004.03.004
- Y. He, Q.-G. Wang, L. Xie and C. Lin, "Delay-rangedependent stability for systems with time-varying delay", Automatica, vol. 43, pp. 371-376, 2007. https://doi.org/10.1016/j.automatica.2006.08.015
- P. Park and J.W. Ko, "Stability and robust stability for systems with a time-varying delay, Automatica, vol. 43, pp. 1855-1858, 2007. https://doi.org/10.1016/j.automatica.2007.02.022
- J. Sun, G.-P.. Liu, J. Chen and D. Rees, "Improved delayrange-dependent stability criteria for linear systems with time-varying delays", Automatica, vol. 46, pp. 466-470, 2010. https://doi.org/10.1016/j.automatica.2009.11.002
- J.-H. Kim, "Note on stability of linear systems with time-varying delay", Automatica, vol. 47, pp. 2118-2121, 2011. https://doi.org/10.1016/j.automatica.2011.05.023
- P. Park, J.W. Ko and C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, vol. 47, pp. 235-238.
- A. Seuret and F. Gouaisbaut, "Wirtinger-based integral inequality: Application to time-delayed systems", Automatica, vol. 49, pp. 2860-2866, 2013. https://doi.org/10.1016/j.automatica.2013.05.030
- O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee and E.J. Cha, "Improved results on stability of linear systems with timevarying delays via Wirtinger-based integral inequality, J. of the Franklin Institute, vol. 351, pp. 5382-5398, 2014.
- J.-H. Kim, "Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, vol. 64, pp. 121-125, 2016. https://doi.org/10.1016/j.automatica.2015.08.025
- Y. Liu, J.H. Park, and B.-Z. Guo, "Results on stability of linear systems with time varying delay", IET Control Theory and Applications, Vol. 11, pp. 129-134, 2017. https://doi.org/10.1049/iet-cta.2016.0634
- C.-K. Zhang, Y. He, L. Jiang, W.-J. Lin, and M. Wu, "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting matrix approach", Applied mathematics and computation, vol. 294, pp. 102-120, 2017. https://doi.org/10.1016/j.amc.2016.08.043
- K. Liu, A. Seuret, and Y. Xia, "Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality, Automatica, vol. 76, pp. 138-142, 2017. https://doi.org/10.1016/j.automatica.2016.11.001
- S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishhnan, Linear Matrix Inequalities in System and Control Theory, Studies in Applied mathematics, 1994.
- K. Gu, V.L. Kharitonov and J. Chen, Stability of timedelay systems, Birkhausser, 2003.