Solving Sangaku: A Traditional Solution to a Nineteenth Century Japanese Temple Problem

  • Received : 2017.01.25
  • Accepted : 2017.04.25
  • Published : 2017.04.30


This paper demonstrates how a nineteenth century Japanese votive temple problem known as sangaku from Okayama prefecture can be solved using traditional mathematical methods of the Japanese Edo (1603-1868 CE). We compare a modern solution to a sangaku problem from Sacred Geometry: Japanese Temple Problems of Tony Rothman and Hidetoshi Fukagawa with a traditional solution of ${\bar{O}}hara$ Toshiaki (?-1828). Our investigation into the solution of ${\bar{O}}hara$ provides an example of traditional Edo period mathematics using the tenzan jutsu symbolic manipulation method, as well as producing new insights regarding the contextual nature of the rules of this technique.


  1. Y. Aida, Sanpo Tenshoho Shinan,, 1810. 会田安明, 算法天生法指南, 1810.
  2. O. Bottema, The Malfatti problem, Forum Geometricorum 1 (2001), 43-50.
  3. J. Casey, A Sequel to Euclid, Hodges, Figgis, and Co., Dublin, 1881.
  4. N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, New York, 2008.
  5. H. Fukagawa and D. Pedoe, Japanese Temples Geometry Problems: San Gaku, Charles Babbage Research Foundation, Winnipeg, 1989.
  6. A. Hirayama, Gakujutsu o Chushin to Shita Wasan Shijo no Hitobito, Tokyo: Fuji Tanki Daigaku Shuppanbu, 1965. 平山諦, 学術を中心とした和算史上の人々, 富士短期大学出版部, 1965.
  7. Kancho Betsu Kanpo Shuroku, Gihodo, 1994. 官庁別官報輯録, 技報堂, 1994.
  8. E. Kiritani, Vanishing Japan: Traditions, Crafts and Culture, Tuttle Publishing, Singapore, 1995.
  9. H. Kotera, Japanese Temple Geometry Problem Sangaku,
  10. P. J. Lu, The Blossoming of Japanese Mathematics, Nature 454 (2008).
  11. M. Morimoto, The Suanxue Qimen and Its Influence on Japanese Mathematics, Seki, Founder of Modern Mathematics in Japan. A Commemoration on His Tercentenary, E. Knobloch, H. Komatsu, and D. Liu (eds), Springer Proceedings in Mathematics and Statistics 39 (2013), 119-132.
  12. M. Morimoto and T. Ogawa, Mathematical Treatise on Technique of Linkage: An Annotated English Translation of Takebe Katahiro's Tetsujutsu Sankei, SCIAMVS 13 (2012), 157-286.
  13. T. Ohara, Sanpo Tenzan Shinan, 1810. Waseda University Kotenseki Sogo Database. 大原利明, 算法点竄指南, 1810. 早稲田大古典籍総合データベース.
  14. I. Reader, Letters to the Gods: The Form and Meaning of Ema, Japanese Journal of Religious Studies 18(1) (1991), 23-50.
  15. J. Robertson, Emagined Community: Votive Tablets (ema) and Strategic Ambivalence in Wartime Japan, Asian Ethnology 67(1) (2008), 43-77.
  16. T. Rothman, Japanese Temple Geometry, Scientific American 278(5) (1997), 84-91.
  17. T. Rothman and H. Fukagawa, Sacred Mathematics-Japanese Temple Geometry, Princeton University Press, Princeton, 2008.
  18. K. Shimodaira, Mathematics of the Japanese: Wasan, Kawade Shobo Shinsha, Tokyo, 1972. 下平和夫, 日本人の数学: 和算, 河出書房新社, 1972.
  19. K. Shimodaira, Aida Yasuaki, Complete Dictionary of Scientific Biography, ed. Charles Coulsont Gillispie and Frederic Lawrence Holmes and Noretta Koertge and Thomson Gale, Charles Scribner's Sons, Detroit, 2008.
  20. S. Shio, Prohibition of Import of Certain Chinese Books and the Policy of the Edo Government, Journal of the American Oriental Society 57(3) (1937), 290-303.
  21. D. E. Smith and Y. Mikami, A History of Japanese Mathematics, Cosimo, Inc: New York, 2000.
  22. F. Soddy, The bowl of integers and the hexlet, Nature 139 (1927), 77-79.
  23. J. Winter, East Asian Paintings: Materials, Structures and Deterioration Mechanisms, Archetype Publications, London, 2008.