DOI QR코드

DOI QR Code

레이저 스캐닝 및 정상파를 이용한 평판 구조물의 손상탐지

Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves

  • Kang, Se Hyeok (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Jeon, Jun Young (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Kim, Du Hwan (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Park, Gyuhae (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Kang, To (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Han, Soon Woo (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
  • 투고 : 2016.11.29
  • 심사 : 2017.01.04
  • 발행 : 2017.05.01

초록

본 연구에서는 레이저 스캐닝 및 단일 주파수 정상파 가진과 파수 분석을 통해 구조물의 손상을 탐지하는 기법을 개발하였다. 구조물에 부착된 압전소자를 통해 단일 주파수로 가진하고, 이때 발생한 구조물의 정상상태 응답을 레이저 도플러 속도계와 거울 방향조절 장치를 통해 측정하였다. 구조물의 결함을 탐지하기 위해 정상상태 응답에서 파수 필터링을 이용한 손상 탐지 기법을 개발 및 적용하였다. 부식결함이 발생한 알루미늄 평판과 층간 분리가 발생한 복합재료 구조물에 대한 손상 탐지를 수행하여 손상의 위치와 크기를 정확히 파악할 수 있었다.

This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

키워드

참고문헌

  1. Lee, J. H. and Lee, S. J., 2009, "Application of Laser-Generated Guided Wave for Evaluation of Corrosion in Carbon Steel Pipe," NDT & E International, Vol. 42, No. 3, pp. 222-227. https://doi.org/10.1016/j.ndteint.2008.09.011
  2. Abramowicz, W., 2003, "Thin-Walled Structures as Impact Energy Absorbers," Thin-Walled Structures, Vol. 41, No. 2, pp. 91-107. https://doi.org/10.1016/S0263-8231(02)00082-4
  3. Mandache, C., Levesque, D., Dubourg, L. and Gougeon, P., 2012, "Non-Destructive Detection of Lack of Penetration Defects in Friction Stir Welds," Science and Technology of Welding and Joining, Vol. 17, No. 4, pp. 295-303. https://doi.org/10.1179/1362171812Y.0000000007
  4. Philip, J., Rao, C. B., Jayakumar, T. and Raj, B., 2000, "A New Optical Technique for Detection of Defects in Ferromagnetic Materials and Components," NDT & E International, Vol 33, No. 5, pp. 289-295. https://doi.org/10.1016/S0963-8695(99)00052-3
  5. LEE, J. H., Lee, B. S. and Lee, M. R., 2005, "Finite Element Analysis for Eddy Current Signal of Aluminum Plate with Surface Breaking Crack," Trans. Korean Soc. Mech. Eng. A, Vol. 29, No. 10, pp. 1336-1343. https://doi.org/10.3795/KSME-A.2005.29.10.1336
  6. Kim, J. W. and Yun, K. W., 2013, "Evaluation of Improvement of Detection Capability of Infrared Thermography Tests for Wall-Thinning Defects in Piping Components by Applying Lock-in Mode," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 9, pp. 1175-1182. https://doi.org/10.3795/KSME-A.2013.37.9.1175
  7. Hasiotis, T., Badogiannis, E. and Tsouvalis, N. T., 2011, "Application of Ultrasonic C-Scan Techniques for Tracing Defects in Laminated Composite Materials," Strojniski Vestnik-Journal of Mechanical Engineering, Vol. 57, No. 3, pp. 192-203.
  8. Lee, J. R., Jeong, H. M., Ciang, C. C., Yoon, D. J. and Lee, S. S., 2010, "Application of Ultrasonic Wave Propagation Imaging Method to Automatic Damage Visualization of Nuclear Power Plant Pipeline," Nuclear Engineering and Design, Vol. 240, No. 10, pp. 3513-3520. https://doi.org/10.1016/j.nucengdes.2010.06.011
  9. Jeong, H. M., Lee, J. R. and Park, C. Y., 2012, "Advances in Hardware of Ultrasonic Propagation Imaging System," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 2, pp. 214-219. https://doi.org/10.7779/JKSNT.2012.32.2.214
  10. Lee, J. R., Chong, S. Y., Jeong, H. and Kong, C. W., 2011, "A Time-of-Flight Mapping Method for Laser Ultrasound Guided in a Pipe and its Application to Wall Thinning Visualization," NDT & E International, Vol. 44, No. 8, pp. 680-691. https://doi.org/10.1016/j.ndteint.2011.07.005
  11. Rogge, M. D., and Leckey, C. A. C., 2013, "Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis," Ultrasonics, Vol. 53, No. 7, pp. 1217-1226. https://doi.org/10.1016/j.ultras.2012.12.015
  12. Mesnil, O., Leckey, C. A. C. and Ruzzene, M., 2014, "Instantaneous and Local Wavenumber Estimations for Damage Quantification in Composites," Structural Health Monitoring, Vol. 14, No. 3, pp. 193-204. https://doi.org/10.1177/1475921714560073
  13. Kudela, P., Radzienski, M., Ostachowicz, W., 2015, "Identification of Cracks in Thin-Walled Structures by Means of Wavenumber Filtering," Mechanical Systems and Signal Processing, Vol. 50, pp. 456-466.
  14. Flynn, E. B., 2014, "Embedded Multi-Tone Ulrasonic Excitation and Continuous-Scanning Laser Doppler Vibrometery for Rapid and Remote Imaging of Structural Defects," In: EWSHM-7th European Workshop on Structural Health Monitoring, Nantes, France, pp. 1561-1567.
  15. Flynn, E. B. and Jarmer, G. J., 2013, "High- Speed, Non-Contact, Baseline-Free Imaging of Hiddden Defects Using Scanning Laser Measurements of Steady-State Ultrasonic Vibration," In: 9th International Workshop on Structural Health Monitoring, Stanford, California, USA, Vol 1, pp. 1186-1193.