DOI QR코드

DOI QR Code

Study on Front Side Metallization of Crystalline Silicon Solar Cells Using a Screw Pumped Dispenser

스크류 펌프 디스펜싱 인쇄를 이용한 결정질 실리콘 태양전지 전면전극 제작에 대한 연구

  • 정혜욱 (부경대학교 인쇄공학과) ;
  • 신동윤 (부경대학교 인쇄공학과)
  • Received : 2016.12.17
  • Accepted : 2017.02.24
  • Published : 2017.05.01

Abstract

Finger electrodes on a crystalline silicon solar cell are required to be constructed as narrow and thick as possible in order to minimize shading losses and electrical resistance. The most common means to construct high-aspect ratio finger electrodes has been screen-printing, but it has difficulty achieving fine finger electrodes because the as-printed finger width is generally wider by 1.3-2.2 times the screen opening width. Consequently, it requires an extremely small screen opening (below $30{\mu}m$) in order to achieve a finger width below $40{\mu}m$. However, the use of such a small screen opening could result in various problems, such as high printing pressure, defective transport of silver paste, and high electrical resistance due to unfavorable mesh marks left on the finger electrodes. In this study, dispensing printing with a screw pump is introduced as an alternative to conventional screen-printing and its unique traits in the front side metallization of crystalline silicon solar cells is discussed.

결정질 실리콘 태양전지의 전면전극은 수광면적을 극대화하면서도 전기적 저항을 최소화하기 위하여 미세하면서도 높은 종횡비로 형성되어야 한다. 기존의 전면전극 형성공정은 스크린 인쇄가 이용되었으나, 스크린 제판 개구부의 선폭보다 인쇄된 전극의 선폭이 1.3~2.2 배 넓게 형성되는 문제 때문에 $40{\mu}m$ 급 미만의 미세전극을 형성하기 위해서는 스크린 제판의 개구부는 $30{\mu}m$ 이하여야 한다. 그러나, 개구부가 미세화될수록 인쇄압력의 증가, 실버 페이스트 전이 불량률 상승 및 메쉬 마크로 인한 전극의 전기적 저항 상승과 같은 문제들이 발생한다. 본 연구에서는 스크린 인쇄를 대체하기 위한 차세대 인쇄방식으로서 스크류 펌프방식의 디스펜싱 인쇄를 소개하고, 기존 인쇄방식과 차별화되는 점들에 대해 논의하도록 한다.

Keywords

References

  1. Seo, T.-J., 2016, "Changes that the Paris Climate Convention will Bring," Korea Investment & Securities, Co., Ltd.
  2. Kang, J.-H., 2016, "Prospects and Issues of the World Renewable Energy Industries in 2016," KEXIM Overseas Research Institute.
  3. SEMI PV Group 2016, International Technology Roadmap for Photovoltaic (ITRPV.net), Results 2015,
  4. Kang, J.-H., 2016, "Photovoltaic Industry Trends in the 1st Quarter of 2016," KEXIM Overseas Research Institute.
  5. Shin, D.-Y. and Kim, Y.-R., 2014, "Comparison of Contact Resistivity Measurements of Silver Paste for a Silicon Solar Cell Using TLM and CTLM," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 6, pp. 539-545. https://doi.org/10.3795/KSME-B.2014.38.6.539
  6. Shin, D.-Y., Yoo, S.-S. and Seo, J.-Y., 2015, "Uncertainty Analysis in Contact Resistivity Measurements of Crystalline Silicon Solar Cells," Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 237-244. https://doi.org/10.1007/s40684-015-0028-5
  7. Shanmugam, V., Wong, J., Peters, I. M., Cunnusamy, J., Zahn, M., Zhou, A., Yang, R., Chen, X., Aberle, A. G. and Mueller, T., 2015, "Analysis of Fine-Line Screen and Stencil-Printed Metal Contacts for Silicon Wafer Solar Cells," IEEE J. Photovolt., Vol. 5, No. 2, pp. 525-533. https://doi.org/10.1109/JPHOTOV.2014.2388073
  8. Mette, A., Richter, P. L., Hörteis, M. and Glunz, S. W., 2007, "Metal Aerosol Jet Printing for Solar Cell Metallization," Prog. Photovoltaics, Vol. 15, No. 7, pp. 621-627. https://doi.org/10.1002/pip.759
  9. Horteis, M. and Glunz, S. W., 2008, "Fine Line Printed Silicon Solar Cells Exceeding 20% Efficiency," Prog. Photovoltaics, Vol. 16, No. 7, pp. 555-560. https://doi.org/10.1002/pip.850
  10. Mahajan, A., Frisbie, C. D. and Francis, L. F., 2013, "Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines," ACS Appl. Mater. Interfaces, Vol. 5, No. 11, pp. 4856-4864. https://doi.org/10.1021/am400606y
  11. Shin, D.-Y., 2010, "Fabrication of an Inkjet-printed Seed Pattern with Silver Nanoparticulate Ink on a Textured Silicon Solar Cell Wafer," J. Micromech. Microeng., Vol. 20, p. 125003. https://doi.org/10.1088/0960-1317/20/12/125003
  12. Shin, D.-Y., 2011, "Investigation of Laser-induced Damage to a Surface Energy Patterned Solar Cell Wafer for the Formation of an Inkjet-printed Seed Pattern," J. Ceram. Process. Res., Vol. 12, No. 2, pp. s114-s117.
  13. Shin, D.-Y., Cha, Y.-K., Ryu, H.-H. and Kim, S.-H., 2012, "Impact of Effective Volume Ratio of a Dispersant to Silver Nano-particles on Silicon Solar Cell Efficiency in Direct Ink-jet Metallization," J. Micromech. Microeng., Vol. 22, No. 11, p. 115007. https://doi.org/10.1088/0960-1317/22/11/115007
  14. Shin, D.-Y., Seo, J.-Y., Tak, H. and Byun, D., 2015, "Bimodally Dispersed Silver Paste for the Metallization of a Crystalline Silicon Solar Cell using Electrohydrodynamic Jet Printing," Sol. Energy Mater. Sol. Cells, Vol. 136, pp. 148-156. https://doi.org/10.1016/j.solmat.2015.01.008
  15. Shin, D.-Y., Yoo, S.-S., Song, H.-E., Tak, H. and Byun, D., 2015, "Electrostatic-Force-Assisted Dispensing Printing to Construct High-Aspect-Ratio of 0.79 Electrodes on a Textured Surface with Improved Adhesion and Contact Resistivity," Sci. Rep., Vol. 5, p. 16704. https://doi.org/10.1038/srep16704
  16. Kim, S. Y., Kim, S. J., Jee, S. S., Park, J. M., Park, K. H., Park, S. C., Cho, E. A., Lee, J. H., Song, I. Y., Lee, S. M., Han, I. T., Lim, K. R., Kim, W. T., Park, J. C., Eckert, J., Kim, D. H. and Lee, E.-S., 2013, "Capillary Flow of Amorphous Metal for High Performance Electrode," Sci. Rep., Vol. 3, p. 2185. https://doi.org/10.1038/srep02185
  17. Fields, J. D., Ahmad, M. I., Pool, V. L., Yu, J., Van Campen, D. G., Parilla, P. A., Toney, M. F. and van Hest, M. F., 2016, "The Formation Mechanism for Printed Silver-contacts for Silicon Solar Cells," Nat. Commun., Vol. 7, p. 11143. https://doi.org/10.1038/ncomms11143
  18. Kalio, A., Richter, A., Hörteis, M. and Glunz, S. W., 2011, "Metallization of n-type Silicon Solar Cells using Fine Line Printing Techniques," Energy Procedia, Vol. 8, pp. 571-576. https://doi.org/10.1016/j.egypro.2011.06.184
  19. Cimiotti, G., Bartsch, J., Kraft, A., Mondon, A. and Glatthaar, M., 2015, "Design Rules for Solar Cells with Plated Metallization," Energy Procedia, Vol. 67, pp. 84-92. https://doi.org/10.1016/j.egypro.2015.03.291
  20. Lee, C.-J. and Shin, D.-Y., 2012, "Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 11, pp. 1135-1140. https://doi.org/10.3795/KSME-B.2012.36.11.1135
  21. Beutel, M., Lewis, A., Prondzinski, M., Selbmann, F., Richter, P., Bamberg, F., Raschtschepkin, P., Krause, A., Koch, C., Hentsche, M., Stegemann, K.-H., Schneiderlochner, E. and Neuhaus, H., 2014, "Fine Line Metallization by Coextrusion Technology for Next Generation Solar Cells," Sol. Energy Mater. Sol. Cells, Vol. 131, pp. 64-71. https://doi.org/10.1016/j.solmat.2014.06.006
  22. Pospischil, M., Klawitter, M., Kuchler, M., Specht, J., Gentischer, H., Efinger, R., Kroner, C., Luegmair, M., König, M., Hörteis, M., Mohr, C., Wende, L., Lossen, J., WeiB, M., Doll, O., Koehler, I., Zengerle, R., Clement, F. and Biro, D., 2013, "Process Development for a High-Throughput Fine Line Metallization Approach Based on Dispensing Technology," Energy Procedia, Vol. 43, pp. 111-116. https://doi.org/10.1016/j.egypro.2014.02.001
  23. Pospischil, M., Klawitter, M., Kuchler, M., Jahn, M., Efinger, R., Schwarz, R., Wende, L., König, M., Clement, F. and Biro, D., 2016, "High Speed Dispensing with Novel 6" Print Head," Energy Procedia, Vol. 98, pp. 61-65. https://doi.org/10.1016/j.egypro.2016.10.081