DOI QR코드

DOI QR Code

Experimental Study of Workpiece Temperature Variation in Reheating Furnace

재가열로에서 소재 온도 변화의 실험적 분석

  • Lee, Chunsik (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Jaeyong (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Ryu, Bo-Hyun (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Yeom, Choongsub (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Rhim, Dong-Ryul (Plant Engineering Center, Institute for Advanced Engineering)
  • 이춘식 (고등기술연구원 플랜트엔지니어링센터) ;
  • 이재용 (고등기술연구원 플랜트엔지니어링센터) ;
  • 유보현 (고등기술연구원 플랜트엔지니어링센터) ;
  • 염충섭 (고등기술연구원 플랜트엔지니어링센터) ;
  • 임동렬 (고등기술연구원 플랜트엔지니어링센터)
  • Received : 2017.11.07
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

The materials of SUS304 and SS400 are adopted for prediction of workpiece temperature variation according to ambient temperature in a reheating furnace. Five thermocouples were installed in a depth direction inside the material, and the ambient temperature was raised to 1200 Celsius degrees. As a result, the material average temperature reached more than 1150 Celsius degrees, and the surface and inside of workpiece locally showed a temperature difference of more than 10K. In order to verify the experimental results, numerical analysis was conducted by applying a thermal model, and the error of numerical simulation compared with the experimental results was within the range of 15K at the average outlet temperature. Also, the error was relatively higher in the SS400 material, which has a larger specific heat change than the SUS304 material. In conclusion, the workpiece temperature in the reheating furnace can be achieved through the atmospheric temperature control, and it is experimentally proved that the material temperature change according to the atmospheric temperature can be estimated within about 3% error range at the outlet position using a thermal model.

재가열로에서 분위기 온도에 따른 소재온도 변화를 예측하기 위해 SUS304, SS400 소재가 적용되었으며, 소재내부에 깊이 방향으로 열전대를 5개씩 설치한 후 분위기 온도를 1200도까지 상승시켰다. 그 결과 소재온도는 평균적으로 1150도 이상 도달했으며, 국부적으로 소재 표면과 내부는 10도 이상의 온도차를 나타내었다. 실험결과의 타당성 검증을 위해 열모델을 적용하여 수치해석 되었으며, 실험결과 대비 해석결과는 출구 평균온도 기준 15도 이내의 범위에서 오차를 나타내었다. 또한 오차는 SUS304 소재에 비해 비열 변화가 큰 SS400 소재에서 상대적으로 높게 나타났다. 결론적으로 재가열로에서 소재 온도는 분위기 온도 제어를 통해 달성할 수 있으며, 분위기 온도에 따른 소재 온도 변화는 출구에서 3% 오차범위 내에서 열모델을 사용하여 유추할 수 있음이 실험적으로 증명되었다.

Keywords

References

  1. Kim K. M. et al., 2015, A numerical study on the efficiency of an industrial furnace for oxygen combustion conditioins, KOSEE, Vol. 24, No. 3, pp. 82-88
  2. Jiraphon Srisertpol et al., 2011, Estimation of the Mathematical Model of the Reheating Furnace Walking Hearth Type in Heating Curve Up Process, International Journal of Mathematical Models and Methods in Applied Sciences, Vol. 5, Issue 1, pp. 167-174
  3. Pongam T. et al., 2012, Manufacturing Process Identification for the Reheating Furnace Walking Hearth Type Using Genetic Algorithm, International Journal of Modeling and Optimization, Vol. 2, No. 2, pp. 114-118
  4. N. Wang et al., 2013, Optimal heating and energy management for the reheating furnace using oxygen enhanced combustion, Proc. of the 2013 AIChE Annual Meeting
  5. Radhakrishnan Purushothaman, 2008, Evaluation and Improvement of Heat Treat Furnace Model, Dissertation, Worcester Polytechnic Institute