DOI QR코드

DOI QR Code

연신 조건에 따른 그래핀/PVDF-HFP 복합 필름의 미세구조 및 물성 분석

Fine Structure and Physical Properties of Graphene/Poly(vinylidene fluoride-co-hexafluoropropylene) Composite Films Prepared under Various Drawing Conditions

  • 김혜림 (동아대학교 융합디자인연구소) ;
  • 이선희 (동아대학교 패션디자인학과)
  • Kim, Hyelim (Research Institute of Convergence Design, Dong-A University) ;
  • Lee, Sunhee (Department of Fashion Design, Dong-A University)
  • 투고 : 2017.02.09
  • 심사 : 2017.04.16
  • 발행 : 2017.04.30

초록

Graphene/poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) composite films were prepared by the solution casting method. The resultant 2 wt% graphene/ PVDF-HFP composite films were uniaxially drawn at $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$. Investigation of the surface morphology of these films confirmed that the orientation of the polymer matrix. The XRD results showed ${\alpha}$-phase crystals. With increasing drawing temperature, the (002) reflections of graphene decreased and the (100) and (020) planes of the ${\alpha}$-phase of PVDF-HFP increased. DSC thermograms indicated no change in the melting temperature but a slight increase in crystallinity with increasing drawing temperatures. The surface resistivity of the graphene/PVDF-HFP composite films in the case of $75^{\circ}C$ drawing temperature were slightly lower than those in the case of the other two temperatures.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. S. H. Lee, J. M. Youn, J. Kwon, and S. W. Kim, "Tailored Assembly of Graphene from Solvent Dispersion", Polym. Sci. Tech., 2011, 22, 130-136.
  2. J. Molina, "Graphene-based Fabrics and Their Applications: A Review", RSC Adv., 2016, 6, 68261-68291. https://doi.org/10.1039/C6RA12365A
  3. X. Ji, Y. Xu, W. Zhang, L. Cui, and J. Liu, "Review of Functionalization, Structure and Properties of Graphene/ polymer Composite Fibers", Composites: Part A, 2016, 87, 29-45. https://doi.org/10.1016/j.compositesa.2016.04.011
  4. J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao, and W. Xu, "Polypyrrole/reduced Graphene Oxide Coated Fabric Electrodes for Supercapacitor Application", Organic Electronics, 2015, 24, 153-159. https://doi.org/10.1016/j.orgel.2015.05.037
  5. C. Zhao, K. Shu, C. Wang, S. Gambhir, and G. G. Wallace, "Reduced Graphene Oxide and Polypyrrole/reduced Graphene Oxide Composite Coated Strechable Fabric Electrodes for Supercapacitor Application", Electrochinica Acta, 2015, 172, 12-19. https://doi.org/10.1016/j.electacta.2015.05.019
  6. F. Meng, W. Lu, Q. Li, J. H. Byun, Y. S. Oh, and T. W. Chou, "Graphene-Based Fibers: A Review", Materials Views, 2015, 27, 5133-5131.
  7. Y. J. Yun, W. G. Hong, W. J. Kim, Y. S. Jun, and B. H. Kim, "A Novel Method for Applying Reduced Graphene Oxide Directly to Electronic Textiles from Yarns to Fabrics", Adv. Mater., 2013, 25, 5701-5705. https://doi.org/10.1002/adma.201303225
  8. Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, and R. B. Kaner, "Graphene-based Materials for Flexible Supercapacitors", Chem. Soc. Rev., 2015, 44, 3639-3665. https://doi.org/10.1039/C4CS00316K
  9. S. M. Seidel, S. Jeschke, P. Vettikuzha, and H.-D. Wiemhofer, "PVDF-HFP/ether-modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries", Chem. Commum., 2015, 51, 12048-12051. https://doi.org/10.1039/C5CC04424C
  10. K. B. M. Isa, Z. Osman, A. K. Arof, L. Othman, N. H. Zainol, S. M. Samin, W. G. Chong, and N. Kamarulzaman, "Lithium Ion Conduction and Ion-polymer Interaction in PVdF-HFP Based Gel Polymer Electrolytes", Solid State Ionincs, 2014, 268, 288-293. https://doi.org/10.1016/j.ssi.2014.10.012
  11. S. H. Lee, "Carbon Nanofiber/Poly(vinylidene fluoridehexafluoro propylene) Composite Films : The Crystal Structure and Thermal Properties with Various Drawing Temperatures", Fiber. Polym., 2013, 14, 441-446. https://doi.org/10.1007/s12221-013-0441-8
  12. L. Wu, W. Yuan, N. Hu, Z. Wang, C. Chen, J. Qiu, J. Ying, and Y. Li, "Improved Piezoelectricity of PVDF-HFP/carbon Black Composite Films", J. Phys. D. Appl. Phys., 2014, 47, 135302-135310. https://doi.org/10.1088/0022-3727/47/13/135302
  13. P. Kumar, S. Yu, F. Shahzad, S. M. Hong, Y. H. Kim, and C. M. Koo, "Ultrahigh Electrically and Thermally Conductive Selfaligned Graphene/polymer Composites Using Large-area Reduced Graphene Oxides", Carbon, 2016, 101, 120-128. https://doi.org/10.1016/j.carbon.2016.01.088
  14. W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P. K. Chu, B. Shen, and Z. Zhang, "Novel Method for the Fabrication of Flexible Film with Oriented Arrays of Graphene in Poly(vinylidene fluoride-co-hexafluoropropylene) with Low Dielectric Loss", J. Phys. Chem., 2014, 118, 10567-10573.
  15. Y. Choi, K. Zhang, K. Y. Chung, D. H. Wang, and H. Park, "PVdF-HFP/exfoliated Graphene Oxide Nanosheet Hybrid Separators for Thermally Stable Li-ion Batteries", RSC Adv., 2016, 6, 80706-80711. https://doi.org/10.1039/C6RA15062D
  16. M. A. Rahman, B. C. Lee, D. T. Phan, and G. S. Chung, "Fabrication and Characterization of Highly Efficient Flexible Energy Harvesters Using PVDF-graphene Nanocomposites", Smart Mater. Struct., 2013, 22, 085017-085026. https://doi.org/10.1088/0964-1726/22/8/085017
  17. L. Wu, Alamusi, J. Xue, T. Itio, N. Hu, Y. Li, C. Yan, J. Qiu, H. Ning, W. Yuan, and B. Gu, "Improved Energy Harvesting Capability of Poly(vinylidene fluoride) Films Modified by Reduced Graphene Oxide", J. Int. Mat. Sys. Struct., 2014, 25, 1813-1824. https://doi.org/10.1177/1045389X14529609
  18. Alamusi, J. M. Xue, L. K. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe, H. Fukunaga, T. Watanabe, Y. L. Liu, H. M. Ning, J. H. Li, Y. Li, and Y. Zhao, "Evaluation of Piezoelectric Property of Reduced Graphene Oxide (rGO)-poly(vinylidene fluoride) Nanocomposites", Nanoscale, 2012, 4, 7250-7255. https://doi.org/10.1039/c2nr32185h
  19. K. Cai, S. Zuo, S. Luo, C. Yao, W. Liu, J. Ma, H. Mao, and Z. Li, "Preparation of Polyaniine/graphene Composites with Excellent Anti-corrosion Properties and Their Application in Waterborne Polyurethane Anticorrosive Coatings", RSC Adv., 2016, 6, 95965-95972. https://doi.org/10.1039/C6RA19618G

피인용 문헌

  1. Electrical heating properties of various electro-circuit patterns coated on cotton fabric using graphene/polymer composites pp.1746-7748, 2019, https://doi.org/10.1177/0040517519829922