참고문헌
- J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, 55, American Mathematical Society, Providence, RI, (1998).
- J. S. Carter, S. Kamada, and M. Saito, Alexander numbering of knotted surface diagrams,Proc. Amer. Math. Soc., 128(2000), 3761-3771. https://doi.org/10.1090/S0002-9939-00-05479-4
- I. Hasegawa, The lower bound of the w-indices of non-ribbon surface-links, Osaka J. Math., 41(2004), 891-909.
- S. Ishida, T. Nagase and A. Shima, Minimal n-charts with four white vertices, J. Knot Theory Ramifications, 20(2011), 689-711. https://doi.org/10.1142/S0218216511008899
-
S. Kamada, Surfaces in
$R^4$ of braid index three are ribbon, J. Knot Theory Ramifications, 1(2)(1992), 137-160. https://doi.org/10.1142/S0218216592000082 - S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications, 5(4)(1996), 517-529. https://doi.org/10.1142/S0218216596000308
- S. Kamada, Braid and Knot Theory in Dimension Four, Mathematical Surveys and Monographs, 95, American Mathematical Society, (2002).
- T. Nagase, D. Nemoto and A. Shima, There exists no minimal n-chart of type (2; 2; 2), Proc. Sch. Sci. Tokai Univ., 46(2011), 1-31.
- T. Nagase and A. Shima, Properties of minimal charts and their applications I, J. Math. Sci. Univ. Tokyo, 14(2007), 69-97.
- T. Nagase and A. Shima, Properties of minimal charts and their applications II, Hiroshima Math. J., 39(2009), 1-35.
- T. Nagase and A. Shima, Properties of minimal charts and their applications III, Tokyo J. Math., 33(2010), 373-392. https://doi.org/10.3836/tjm/1296483477
- T. Nagase and A. Shima, Properties of minimal charts and their applications IV: Loops, to appear J. Math. Sci. Tokyo J. Math. (arXiv:1603.04639).
- T. Nagase and A. Shima, Properties of minimal charts and their applications V-, in preparation.
- T. Nagase and A. Shima, Gambits in charts, J. Knot Theory Ramifications, 24(9) (2015), 1550052 (21 pages). https://doi.org/10.1142/S0218216515500522
- T. Nagase, A. Shima and H. Tsuji, The closures of surface braids obtained from minimal n-charts with four white vertices, J. Knot Theory Ramifications, 22(2)(2013) 1350007 (27 pages). https://doi.org/10.1142/S0218216513500077
- M. Ochiai, T. Nagase and A. Shima, There exists no minimal n-chart with five white vertices, Proc. Sch. Sci. Tokai Univ., 40(2005), 1-18.
- K. Tanaka, A Note on CI-moves, Intelligence of Low Dimensional Topology 2006 Eds. J. Scott Carter et al. (2006), 307-314.