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Abstract. In this paper, we shall show a condition for that a chart is C-move equivalent

to the product of two charts, the union of two charts Γ∗ and Γ∗∗ which are contained in

disks D∗ and D∗∗ with D∗ ∩D∗∗ = ∅.

1. Introduction

Charts are oriented labeled graphs in a disk which represent surface braids (see
[1], [7], and see Section 2 for the precise definition of charts, see [7, Chapter 14] for
the definition of surface braids). In a chart there are three kinds of vertices; white
vertices, crossings and black vertices. A C-move is a local modification of charts
in a disk. The closures of surface braids are embedded closed oriented surfaces in
4-space R4 (see [7, Chapter 23] for the definition of the closures of surface braids).
A C-move between two charts induces an ambient isotopy between the closures of
the corresponding two surface braids. In this paper, we shall show a condition for
that a chart is C-move equivalent to the product of two charts (Theorem 1).

We will work in the PL category or smooth category. All submanifolds are
assumed to be locally flat. In [4] and [15], we investigated minimal charts with
exactly four white vertices. In [16], we showed that there is no minimal chart
with exactly five vertices. Hasegawa proved that there exists a minimal chart with
exactly six white vertices which represents the surface braid whose closure is ambient
isotopic to a 2-twist spun trefoil [3]. In [8] and [14], we investigated minimal charts
with exactly six white vertices. We show that there is no minimal chart with
exactly seven vertices ([9], [10], [11], [12], [13]). Thus the next targets are minimal
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Figure 1: Chart of type (1; 3, 2, 2).

charts with eight or nine white vertices. As an application of Theorem 1, we shall
show that there are 12 kinds of types for a minimal chart with eight white vertices
(Corollary 2 and Corollary 3), and there are 15 kinds of types for a minimal chart
with nine white vertices (Corollary 5).

Let Γ be a chart. For each label m, we denote by Γm the ’subgraph’ of Γ
consisting of all the edges of label m and their vertices.

Two charts are said to be C-move equivalent if there exists a finite sequence of
C-moves which modifies one of the two charts to the other.

Now we define a type of a chart: Let Γ be a chart, m a label of Γ, and
n1, n2, . . . , np integers. The chart Γ is said to be of type (m;n1, n2, . . . , np), or
of type (n1, n2, . . . , np) briefly, if it satisfies the following three conditions:

(i) For each i = 1, 2, . . . , p, the chart Γ contains exactly ni white vertices in
Γm+i−1 ∩ Γm+i.

(ii) If i < 0 or i > p, then Γm+i does not contain any white vertices.

(iii) Each of the two subgraphs Γm and Γm+p contains at least one white vertex.

Note that n1 ≥ 1 and np ≥ 1 by Condition (iii).
The chart Γ shown in Figure 1 contains exactly seven white vertices, and Γ1 ∩

Γ2 = {v2, v4, v5}, Γ2 ∩ Γ3 = {v1, v6} and Γ3 ∩ Γ4 = {v3, v7}. Hence this chart is a
chart of type (1; 3, 2, 2). Note that this chart is not a minimal chart.

Two C-move equivalent charts Γ and Γ′ are said to be same C-type provided
that the types of the two charts are same.

For a subset X of a chart, let

w(X) = the number of white vertices of the chart contained in X.

A chart Γ is zero at label k provided that
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(i) Γk ∩ Γk+1 = ∅,

(ii) there exists a label i with i ≤ k and w(Γi) 6= 0, and

(iii) there exists a label j with k < j and w(Γj) 6= 0.

Let Γ be an n-chart, and D1, D2 disjoint disks with Di ∩ Γ 6= ∅ for i = 1, 2,
∂Di ∩ Γ = ∅ for i = 1, 2, and D1 ∪D2 ⊃ Γ. Then we can consider Γ∗ = D1 ∩ Γ and
Γ∗∗ = D2 ∩ Γ as n-charts. Then we call the chart Γ the product of the two charts
Γ∗ and Γ∗∗ [6].

A chart Γ is separable at label k if there exist subcharts Γ∗, Γ∗∗ such that

(i) Γ is the product of the two charts Γ∗ and Γ∗∗,

(ii) w(Γ∗) 6= 0 and w(Γ∗∗) 6= 0,

(iii) w(Γ∗i ) = 0 for all label i with k < i, and

(iv) w(Γ∗∗i ) = 0 for all label i with i ≤ k.

The following is our main theorem:

Theorem 1. A chart Γ is zero at label k if and only if there exists a chart Γ′ with
the same C-type of Γ such that Γ′ is separable at label k.

A chart Γ is minimal if it possesses the smallest number of white vertices among
the charts C-move equivalent to the chart Γ (cf. [5]).

Corollary 2. Let Γ be a minimal chart with w(Γ) = 8. If Γ is zero at some label,
then Γ is C-move equivalent to one of the following charts:

(a) the product of two charts of type (4).

(b) the product of two charts of type (2, 2).

(c) the product of a chart of type (4) and a chart of type (2, 2).

The chart shown in Figure 2 contains exactly eight white vertices of type
(2; 4, 0, 2, 2). This chart is a product of a chart of type a chart of type (2; 4) and a
chart of type (4; 2, 2).

Corollary 3. Let Γ be a minimal n-chart with w(Γ) = 8 such that Γ is not zero
at any label. If necessary we change all the edges of label k to ones of label n − k
for each k = 1, 2, · · · , n − 1 simultaneously, then the type of Γ is (8), (6, 2), (5, 3),
(4, 4), (4, 2, 2), (3, 3, 2), (3, 2, 3), (2, 4, 2) or (2, 2, 2, 2).

The chart shown in Figure 3 is a chart of type (1; 2, 4, 2), and represents a
3-twist spun trefoil [2].

Corollary 4. If Γ is a minimal chart with w(Γ) = 9 or 11, then the chart is not
zero at any label. Namely if the type of the chart is (m;n1, n2, · · · , np), then for
each i = 1, 2, · · · , p, we have ni 6= 0.
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Figure 2: Product of a chart of type (2; 4) and a chart of type (4; 2, 2).

Figure 3: Chart of type (1; 2, 4, 2).

Corollary 5. Let Γ be a minimal n-chart with w(Γ) = 9. If necessary we change all
the edges of label k to ones of label n−k for each k = 1, 2, · · · , n−1 simultaneously,
then the type of Γ is (9), (7, 2), (6, 3), (5, 4), (5, 2, 2), (4, 3, 2), (4, 2, 3), (4, 1, 4),
(3, 4, 2), (3, 3, 3), (2, 5, 2), (4, 1, 2, 2), (3, 2, 2, 2), (2, 3, 2, 2) or (2, 2, 1, 2, 2).

The paper is organized as follows. In Section 2, we define charts. In Section 3
and Section 4, we prove lemmata that are needed in order to prove Theorem 1.
In Section 5, we define ωk-minimal charts. By using ωk-minimal charts, we show
that if a chart Γ is zero at label k, then there exists a chart Γ∗ obtained from Γ by
C-I-R2 moves and C-I-M2 moves such that Γ∗k ⊃ Γk and all of black vertices and
white vertices in

⋃∞
i=k+1 Γ∗i are contained in the same complementary domain of

Γk. In Section 6, we give a proof of Theorem 1 and proofs of corollaries.
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Figure 4: (a) A black vertex. (b) A crossing. (c) A white vertex.

2. Preliminaries

Let n be a positive integer. An n-chart is an oriented labeled graph in a disk,
which may be empty or have closed edges without vertices, called hoops, satisfying
the following four conditions:

(i) Every vertex has degree 1, 4, or 6.

(ii) The labels of edges are in {1, 2, . . . , n− 1}.
(iii) In a small neighborhood of each vertex of degree 6, there are six short arcs,

three consecutive arcs are oriented inward and the other three are outward,
and these six are labeled i and i+ 1 alternately for some i, where the orien-
tation and the label of each arc are inherited from the edge containing the
arc.

(iv) For each vertex of degree 4, diagonal edges have the same label and are
oriented coherently, and the labels i and j of the diagonals satisfy |i− j| > 1.

We call a vertex of degree 1 a black vertex, a vertex of degree 4 a crossing, and a
vertex of degree 6 a white vertex respectively (see Figure 4).

Let D2
1, D

2
2 be disks, and pr2 : D2

1 × D2
2 → D2

2 the projection defined by
pr2(x, y) = y. Let Qn be a set of n interior points of D2

1. A surface braid S is an
oriented surface embedded properly in D2

1 ×D2
2 such that the map pr2|S : S → D2

2

is a branched covering of degree n and ∂S = Qn × ∂D2
2 [7, Chapter 14]. A surface

braid can be represented by a motion picture method, a one-parameter family of ge-
ometric n-braids {bt}t∈[0,1] except for a finite number of values t1, t2, · · · , tm ∈ [0, 1].
A motion picture for a white vertex is a motion picture as shown in Figure 5(a)
(cf. [7, p. 132, Figure 18.5]). A motion picture for a crossing is a motion picture
as shown in Figure 5(b) (cf. [7, p. 131, Figure 18.4]). A motion picture for a black
vertex is a motion picture as shown in Figure 5(c) (cf. [7, p. 134, Figure 18.7]). A
black vertex is corresponding to a singular point of a branched covering map.

Now C-moves are local modifications of charts in a disk as shown in Figure 6
(cf. [1], [7], [17]). We do not use a C-I-M4 move (a tetrahedral move), and we do
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Figure 5:

not use a C-II move and a C-III move. We often use C-I-M2 moves and C-I-R2
moves in this paper.

Let Γ be a chart, and m a label of Γ. The ’subgraph’ Γm of Γ consists of all
the edges of label m and their vertices. An edge of Γ is the closure of a connected
component of the set obtained by taking out all white vertices and crossings from
Γ. On the other hand, we assume that

an edge of Γm is the closure of a connected component of the set obtained by
taking out all white vertices from Γm.

Thus any vertex of Γm is a black vertex or a white vertex. Hence any crossing of Γ
is not considered as a vertex of Γm.

In this paper for a set X in a space we denote the interior of X, the boundary
of X and the closure of X by IntX, ∂X and Cl(X) respectively.
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Figure 6: For the C-III move, the black vertex in the left figure is not
contained in a middle edge of three consecutive edges oriented inward or
outward.

3. Separating Systems

In this paper we assume that every chart is in the plane.
For a subset X of a chart Γ, let

BW(X) = the set of all the black and white vertices of Γ in X.

A disk D is in general position with respect to a chart Γ provided that

(i) ∂D does not intersect the set of crossings nor BW(Γ), and

(ii) if an edge of Γ intersects ∂D, then the edge intersects ∂D transversely.

Let D be a disk. A simple arc ` is called a proper arc of D provided that
` ∩ ∂D = ∂`. Let L be a simple arc on ∂D. A proper arc ` of D is called a
(D,L)-arc provided that ∂` ⊂ L.

Let Γ be a chart, and k a label of Γ. A simple arc in an edge of Γk is called an
arc of label k.
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Let D be a disk in general position with respect to a chart Γ, and L a simple
arc on ∂D. A (D,L)-arc ` of label k is said to be reducible if for the subarc L′ of L
with ∂L′ = ∂` we have IntL′ ∩ (Γk−1 ∪ Γk ∪ Γk+1) = ∅.

Let k be a positive integer. Let D− and D+ be disks in general position with
respect to a chart Γ such that J = D− ∩D+ is an arc. The triplet (D−, D+, J) is
called a separating system at label k for the chart Γ provided that

(i) D− ∩ BW(
⋃∞

i=k+1 Γi) = ∅,

(ii) D+ ∩ BW(
⋃k

i=1 Γi) = ∅,

(iii) J ∩ Γk = ∅, and

(iv) Cl(∂D+ − J) ∩ Γ = ∅.

Lemma 6. Let (D−, D+, J) be a separating system at label k for a chart Γ. Then
the following hold:

(a) If there exists a (D+, J)-arc of label less than k, then there exists a reducible
(D+, J)-arc of label less than k.

(b) If there exists a (D−, J)-arc of label greater than k, then there exists a re-
ducible (D−, J)-arc of label greater than k.

Proof. We show Statement (a). Suppose that there exists a (D+, J)-arc of label
less than k. Let S be the set of all (D+, J)-arcs of label less than k. For each ` ∈ S
let P` be the subarc of J with ∂P` = ∂`. Let

m(`) = the number of points in Int(P`) ∩ (
⋃k

i=1 Γi).

Let `0 be an element in S with

m(`0) = min{ m(`) | ` ∈ S }.

Let j be the label of `0. We have j ≤ k − 1. Let

s = the number of points in Int(P`0) ∩ (Γj−1 ∪ Γj ∪ Γj+1).

We show that s = 0 by contradiction. Suppose that s > 0. Let D0 be the disk in
D+ bounded by `0∪P`0 . Let `1 be a connected component of D0∩(Γj−1∪Γj∪Γj+1)
different from `0. Since j + 1 ≤ (k − 1) + 1 = k and since there do not exist any

black vertices nor white vertices of
⋃k

i=1 Γi in D+ by Condition (ii) of a separating
sysytem, the arc `1 is a proper arc of D0. Since `0∩`1 = ∅, the arc `1 is a (D0, P`0)-
arc. Hence `1 is a (D+, J)-arc. Let p be the label of `1. Now J ∩ Γk = ∅ implies
p 6= k. Hence we have p < k. Thus `1 ∈ S. Since P`1 ∩ `0 = ∅, we have

m(`1) ≤ m(`0)− 2.

This contradicts that m(`0) is minimal. Hence we have s = 0. Therefore

Int(P`0) ∩ (Γj−1 ∪ Γj ∪ Γj+1) = ∅.
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This means that `0 is a desired reducible (D+, J)-arc. This proves Statement (a).
Similarly we can show Statement (b). 2

Let Γ be a chart, and e1 and e2 edges of label m (possibly e1 = e2). Let α be
an arc such that

(i) ∂α consists of a point in e1 and a point in e2, and

(ii) Int(α) transversely intersects edges of Γ (see Figure 7(a)).

Let D be a regular neighborhood of the arc α. Let γ1 = e1 ∩D and γ2 = e2 ∩D.
Then γ1 and γ2 are proper arcs of D and they split the disk D into three disks.
Let E be the one of the three disks with E ⊃ α (see Figure 7(b)). A chart Γ′ is
obtained from Γ by a surgery along α provided that

(iii) Γ′m = (Γm − (γ1 ∪ γ2)) ∪ Cl(∂E − (γ1 ∪ γ2)), and

(iv) Γ′i = Γi (i 6= m) (see Figure 7(c)).

Figure 7:

Let k be a positive integer. Let Γ and Γ∗ be charts. We write Γ∗
k∼ Γ provided

that

(i) the chart Γ∗ is obtained from Γ by applying C-I-M2 moves, C-I-R2 moves
and ambient isotopies of the plane, and

(ii) Γk is a subset of Γ∗k.

For a positive integer k and a chart Γ, let

Fix(Γk; Γ) = { Γ∗ | Γ∗
k∼ Γ }.

Remark. The relation Γ∗
k∼ Γ implies that Γ∗ and Γ are same C-type.

Lemma 7. Let (D−, D+, J) be a separating system at label k for a chart Γ. Then
there exists a chart Γ′ ∈ Fix(Γk; Γ) such that

(a) the chart Γ′ is obtained from Γ by applying surgeries along subarcs of J , and

(b) the chart Γ′ does not possess any (D−, J)-arcs of label greater than k nor
(D+, J)-arcs of label less than k.
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Proof. Let S be the set of all charts obtained from Γ by applying surgeries along
subarcs of J . Since J ∩ Γk = ∅ by Condition (ii) of a separating system, we have
that Γ∗k = Γk for each chart Γ∗ ∈ S. Thus for each chart Γ∗ ∈ S we have that
Γ∗ ∈ Fix(Γk; Γ) and that (D−, D+, J) is a separating system at label k for Γ∗. For
each chart Γ∗ ∈ S, let

n(Γ∗) = the number of (D+, J)-arcs of label less than k
+ the number of (D−, J)-arcs of label greater than k.

Let Γ′ be a chart in S such that

n(Γ′) = min{ n(Γ∗) | Γ∗ ∈ S }.

We show that n(Γ′) = 0 by contradiction. Suppose that n(Γ′) > 0. Then by
Lemma 6 the chart Γ′ possesses a reducible (D−, J)-arc of label greater than k or
a reducible (D+, J)-arc of label less than k, say `. Let P` be the subarc of J with
∂P` = ∂`. Let Γ′′ be a chart obtained from Γ′ by applying a surgery along the
subarc P`. Then we have Γ′′ ∈ S and

n(Γ′′) ≤ n(Γ′)− 1.

This contradicts that n(Γ′) is minimal. Therefore n(Γ′) = 0. The chart Γ′ is a
desired chart. 2

4. Movable Disks

Let D be a disk in general position with respect to a chart Γ. The disk D is
called a movable disk at label k with respect to the chart Γ provided that

(i) D ∩ BW(
⋃k

i=1 Γi) = ∅, and

(ii) ∂D ∩ (
⋃k+1

i=1 Γi) = ∅.

Let Γ be a chart, and m a label of Γ. A hoop is a closed edge of Γ without
vertices (hence without crossings, neither). A ring is a closed edge of Γm containing
a crossing but not containing any white vertices.

Lemma 8. Let (D−, D+, J) be a separating system at label k for a chart Γ. If
∂(D− ∪D+) ∩ Γk+1 = ∅, then there exists a chart Γ′ ∈ Fix(Γk; Γ) such that

(a) the chart Γ′ is obtained from Γ by applying surgeries along subarcs of J , and

(b) D+ is a movable disk at label k with respect to Γ′.

Proof. By Lemma 7 there exists a chart Γ′ ∈ Fix(Γk; Γ) obtained from Γ by
applying surgeries along subarcs of J such that

(1) Γ′ does not possess any (D−, J)-arcs of label greater than k nor (D+, J)-arcs
of label less than k.

Thus by Condition (ii), (iii) and (iv) of a separating system,
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(2) D+ ∩ BW(
⋃k

i=1 Γ′i) = D+ ∩ BW(
⋃k

i=1 Γi) = ∅,

(3) J ∩ Γ′k = J ∩ Γk = ∅,

(4) Cl(∂D+ − J) ∩ Γ′ = Cl(∂D+ − J) ∩ Γ = ∅.

Hence any connected component of D+∩(
⋃k

i=1 Γ′i) is a hoop, a ring or a (D+, J)-arc
of label less than k. Since Γ′ does not possess any (D+, J)-arcs of label less than k
by (1), we have

(5) J ∩ (
⋃k

i=1 Γ′i) = ∅.

Since the chart Γ′ is obtained from Γ by applying surgeries along subarcs of J , we
have

(6) ∂(D− ∪D+) ∩ Γ′k+1 = ∂(D− ∪D+) ∩ Γk+1 = ∅, and

(7) D− ∩ BW(
⋃∞

i=k+1 Γ′i) = D− ∩ BW(
⋃∞

i=k+1 Γi) = ∅ by Condition (i) of a
separating system.

Hence any connected component of D− ∩ Γ′k+1 is a hoop, a ring or a (D−, J)-arc.
Since Γ′ does not possess any (D−, J)-arcs of label greater than k by (1), we have
J ∩ Γ′k+1 = ∅. Thus (4) and (5) imply

∂D+ ∩ (
⋃k+1

i=1 Γ′i) = ∅.

Therefore D+ is a movable disk at label k with respect to Γ′. 2

Let E be a disk in general position with respect to a chart Γ. The disk E is
called a c-disk at label k with respect to Γ provided that in IntE there exist mutually
disjoint movable disks D1, D2, · · · , Ds at label k with respect to the chart Γ and a
connected component W of E − (Γk −

⋃s
i=1Di) (see Figure 8) such that

(i) W ⊃ ∂E,

(ii) W ⊃
⋃s

i=1Di, and

(iii) W ⊃ E ∩ BW(
⋃∞

i=k+1 Γi).

We call W the principal domain of the c-disk E. We also call the movable disks
D1, D2, · · · , Ds associated movable disks of the c-disk E.

Lemma 9. Let E be a c-disk at label k with respect to a chart Γ. Let p ∈ ∂E − Γ.
Then there exists a separating system (D−, D+, J) at label k for the chart Γ with
E = D− ∪D+ and p ∈ ∂D+ − J .

Proof. Let W be the principal domain of the c-disk E and D1, D2, · · · , Ds associated
movable disks of E. Suppose that

(W −
⋃s

i=1Di) ∩ BW(
⋃∞

i=k+1 Γi) = { ws+1, ws+2, . . . , wt }.

For each i = s+ 1, s+ 2, . . . , t, let Di be a regular neighbourhood of wi in W . Then
by Condition (iii) of a c-disk we have
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Figure 8: (a) The dark disk is a movable disk in a c-disk. (b) The gray ’disk
with two holes’ is the principal domain of the c-disk.

(1) E ∩ BW(
⋃∞

i=k+1 Γi) ⊂
⋃t

i=1Di.

Since W is a connected component of E − (Γk −
⋃s

i=1Di) by the condition of a
c-disk, we have

(W −
⋃s

i=1Di) ∩ Γk = ∅.

Hence there exist mutually disjoint simple arcs `1, `2, · · · , `t in W (see Figure 9(a))
such that

(2) for each i = 1, 2, · · · , t, `i ∩ Γk = ∅, and ∂`i ∩ Γ = ∅,

(3) for each i = 1, 2, · · · , t, the arc `i does not contain any white vertices, black
vertices nor crossings of Γ, and the arc `i intersects edges of Γ transversely,

(4) (
⋃t

i=1 Int(`i)) ∩ (
⋃t

i=1Di) = ∅,

(5) for each i = 1, 2, · · · , t− 1, the arc `i connects a point on ∂Di and a point on
∂Di+1, and

(6) the arc `t connects a point on ∂Dt and the point p.

Let D+ be a regular neighbourhood of
⋃t

i=1(Di ∪ `i) in E and D− = Cl(E −D+).
Then D− and D+ are disks with E = D− ∪ D+. Since E ∩ BW(

⋃∞
i=k+1 Γi) ⊂⋃t

i=1Di ⊂ D+ by (1), we have

D− ∩ BW(
⋃∞

i=k+1 Γi) = ∅ (see Figure 9(b)).

Since ws+1, ws+2, . . . , wt ∈W−
⋃s

i=1Di ⊂ E−Γk, we have ws+1, ws+2, . . . , wt 6∈ Γk.
Thus

(7) none of Ds+1, Ds+2, · · · , Dt intersect
⋃k

i=1 Γi.

Since none of the movable disks at label k nor Ds+1, Ds+2, · · · , Dt intersect

BW(
⋃k

i=1 Γi), we have

D+ ∩ BW(
⋃k

i=1 Γi) = ∅.
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Let L = D+ ∩ ∂E. Then L is a regular neighbourhood of p in ∂E. Since p ∈
∂E − Γ, we have L ∩ Γ = ∅. Let J = D− ∩ D+. Then L = Cl(∂D+ − J). Thus
Cl(∂D+ − J) ∩ Γ = L ∩ Γ = ∅. Since for each i = 1, 2, · · · , t, ∂Di ∩ Γk = ∅ by (2),
(7) and Condition (ii) of a movable disk, we have J ∩ Γk = ∅. Therefore the triplet
(D−, D+, J) is a desired separating system at label k for Γ. 2

Figure 9: (a) The dark disk is a movable disk.

5. ωk-minimal Charts

Let Γ be a chart. Let Γ∗ be a chart in Fix(Γk; Γ). We denote Γ∗
k
≈ Γ provided

that

for any complementary domain U of Γk, the domain U contains mutually
disjoint movable disks D1, D2, · · · , Ds at label k with respect to Γ∗ with
U ∩ (Γ∗k − Γk) ⊂

⋃s
i=1Di.

The movable disks D1, D2, · · · , Ds are called basic movable disks at label k with
respect to U and Γ∗. Let

Ω(Γk; Γ) = { Γ∗ | Γ∗
k
≈ Γ }.

Since Γ ∈ Ω(Γk; Γ), we have Ω(Γk; Γ) 6= ∅.
Let Γ be a chart, k a label of Γ, and Γ′ ∈ Ω(Γk; Γ). Let U be a complementary

domain of Γk , and D a movable disk at label k in U with respect to Γ′. Let
F = Cl(U). Let p ∈ ∂F −

⋃
i 6=k Γ′i and q ∈ ∂D. Suppose that there exists a

simple arc α in F connecting the two points p and q with α ∩ Γ′ = p and α ∩
D = q (see Figure 10(a)). Then we can shift the movable disk D at label k to
another complementary domain of Γk as follows (see Figure 10): Let N1 be a
regular neighbourhood of D ∪ α in F . Let N2 be a regular neighbourhood of N1 in
F and N3 a regular neighbourhood of N2 in F . For each i = 1, 2, 3 let βi = Ni∩∂F
and γi = Cl(∂Ni − βi) (see Figure 10(b)). Let Γ′′ be a chart with

Γ′′j =

{
(Γ′k − β3) ∪ (γ3 ∪ ∂N1) if j = k,
Γ′j otherwise.
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Then Γ′ is C-move equivalent to Γ′′ by modifying ∂F by C-I-R2 moves along γ2 and
a C-I-M2 move (see Figure 10(c)). Let N be a regular neighbourhood of N1. Then
N is a movable disk at label k with respect to Γ′′. In a regular neighbourhood of
N3 we can modify the arc γ3 to the arc β3 by an ambient isotopy keeping ∂γ3 fixed.
Let Γ∗ be the resulting chart and D∗ the disk modified from the movable disk N
(see Figure 10(d)). Then Γ∗ is in Fix(Γk; Γ) and D∗ is a movable disk at label k
with respect to Γ∗. Now Γ∗k is the union of Γ′k and a ring in the movable disk D∗.

Thus Γ∗
k
≈ Γ. We say that Γ∗ is obtained from Γ′ by shifting the movable disk D

to the outside of Cl(U) along the arc α and that D∗ is a movable disk induced from
the movable disk D circled by a ring of label k.

Figure 10: Shifting a movable disk.

Let Γ be a chart and k a label of Γ. Let T be a maximal tree of the dual graph
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of Γk. Namely

(i) each vertex v of the tree T corresponds to a complementary domain Uv of
Γk, and

(ii) each edge e of the tree T with ∂e = {v1, v2} corresponds to an edge eΓ of Γk

with eΓ ⊂ Cl(Uv1) ∩ Cl(Uv2).

The tree T is called a dual tree with respect to Γk.

Let Γ be a chart and k a label of Γ. Let T be a dual tree with respect to Γk. Let
v0 be the vertex of T which corresponds to the unbounded complementary domain
of Γk. Let V (T ) be the set of all vertices of T . For each vertex v ∈ V (T ), let
T (v, v0) be the path in T connecting v and v0. Let

length(v;T ) = the number of edges in T (v, v0).

We have length(v0;T ) = 0. For each chart Γ∗ ∈ Ω(Γk; Γ) and v ∈ V (T ), let

weightk(v; Γ∗) =

{
0 if Uv ∩ BW(

⋃∞
i=k+1 Γ∗i ) = ∅,

1 otherwise,

ωk(Γ∗, T ) =
∑

v∈V (T ) weightk(v; Γ∗)× length(v;T ).

A chart Γ′ ∈ Ω(Γk; Γ) is ωk-minimal if there exists a dual tree T with respect
to Γk such that ωk(Γ′, T ) = min{ ωk(Γ∗, T ) | Γ∗ ∈ Ω(Γk; Γ) }.

Lemma 10. Let Γ be a chart which is zero at label k. If a chart Γ′ ∈ Ω(Γk; Γ) is
ωk-minimal, then there exists a dual tree T with respect to Γk with ωk(Γ′, T ) = 0.

Proof. Suppose that for a dual tree T with respect to Γk, we have

ωk(Γ′, T ) = min{ ωk(Γ∗, T ) | Γ∗ ∈ Ω(Γk; Γ) }.

We shall show ωk(Γ′, T ) = 0 by contradiction. Suppose that ωk(Γ′, T ) > 0. Let
V (T ) be the set of all vertices of T and

P = { v ∈ V (T ) | weightk(v; Γ′)× length(v;T ) > 0 }.

Then ωk(Γ′, T ) > 0 implies P 6= ∅. Let v1 be a vertex in P such that

(1) length(v1;T ) = max{ length(v;T ) | v ∈ P }.

Then v1 ∈ P implies

(2) 0 < weightk(v1; Γ′)× length(v1;T ) = length(v1;T ).

Let V1 be a complementary domain of Γk corresponding to v1. Since Γ′ ∈
Ω(Γk; Γ), there exist basic movable disks D1, D2, · · · , Ds at label k with respect to
V1 and Γ′ (see Figure 11(a)) such that

(3) V1 ∩ (Γ′k − Γk) ⊂
⋃s

i=1Di.
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Let δ be a connected component of ∂V1 such that a bounded complementary domain
of δ contains V1 (see Figure 11(b)). Let N(δ) be a regular neighbourhood of δ and
W = Cl(V1 − N(δ)) (see Figure 11(c)). Let ` be a connected component of ∂W
such that W is contained in the disk E bounded by ` (see Figure 11(c) and (d)).
Then we have

W ⊃ ∂E.

Figure 11: Dark disks are movable disks at label k. (a) The thicken curves
are of label k. (b) The thicken curve is the set δ. (c) The thicken curve is
the simple closed curve `. (d) The thicken curve is the edge eΓ. The set X
is a disk with IntX ∩ IntE = ∅.

Claim. The disk E is a c-disk.

Proof of Claim. Since Γ′
k
≈ Γ, the chart Γ′ is zero at label k. Hence δ ⊂ Γk ⊂ Γ′k

implies that δ ∩ Γ′k+1 = ∅. Thus

(4) ∂E ∩ (Γ′k ∪ Γ′k+1) = ∅.

Now δ ∩ (
⋃s

i=1Di) = ∅ implies N(δ) ∩ (
⋃s

i=1Di) = ∅. Thus V1 ⊃
⋃s

i=1Di implies

W = Cl(V1 −N(δ)) ⊃
⋃s

i=1Di.

Let S be the set of all connected components of E − (Γk −
⋃s

i=1Di) different from
W . Then we have

(5) E = W ∪ (
⋃
{ Cl(U) | U ∈ S }).

For each domain U ∈ S, let vU be the vertex of T corresponding to U . Since
U is surrounded by V1, we have v1 ∈ T (vU , v0) where v0 is the vertex of T which
corresponds to the unbounded complementary domain of Γk. Hence

length(vU ;T ) ≥ length(v1;T ) + 1 and
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weightk(vU ; Γ′) = 0

by the property (1) of the vertex v1. This means

U ∩ BW(
⋃∞

i=k+1 Γ′i) = ∅.

Since Γ′
k
≈ Γ, the chart Γ′ is zero at label k. Thus Γ′k ∩ Γ′k+1 = ∅. Hence ∂U ⊂

Γk ⊂ Γ′k implies

Cl(U) ∩ BW(
⋃∞

i=k+1 Γ′i) = ∅.

Thus (5) implies that

E ∩ BW(
⋃∞

i=k+1 Γ′i) ⊂W .

Therefore the disk E is a c-disk at label k with respect to Γ′. Hence Claim holds.

Let T (v1, v0) be the path in the tree T connecting v1 and v0. Let e be the edge
of T (v1, v0) with e 3 v1. Let v2 be the vertex of e different from v1. Now we have

(6) length(v2;T ) = length(v1;T )− 1.

Let eΓ be the edge of Γk corresponding to the edge e which connects the two vertices
v1 and v2. Let V2 be the complementary domain of Γk corresponding to v2. Then
we have eΓ ⊂ Cl(V1) ∩ Cl(V2). Let p be a point in Int(eΓ) −

⋃
i 6=k Γ′i and X the

closure of a connected component of (V1 − E) − Γ′ with X 3 p. Let q be a point
in ∂E ∩ X and α a proper simple arc in X with α ∩ Γ′ = p and α ∩ E = q (see
Figure 11(d)).

By Lemma 9 there exists a separating system (D−, D+, J) at label k for Γ′ with
E = D− ∪D+ and q ∈ D+ ∩ ∂E.

Now (4) implies

∂(D− ∪D+) ∩ Γ′k+1 = ∂E ∩ Γ′k+1 = ∅.

Thus by Lemma 8 there exists a chart Γ′′ ∈ Fix(Γk; Γ) obtained from Γ′ by applying
surgeries along subarcs of J such that D+ is a movable disk at label k with respect
to Γ′′.

Let Γ∗ be a chart obtained from Γ′′ by shifting the movable disk D+ to the
outside of Cl(V1) along the arc α and let D∗ be a movable disk induced from the
movable disk D+ circled by a ring of label k. Then D∗ is a new movable disk in V2

disjoint from the old movable disks in V2. Hence we have Γ∗ ∈ Ω(Γk; Γ). Now
weightk(v1; Γ′)× length(v1;T ) = length(v1;T ) > 0 by (2),
weightk(v1; Γ∗)× length(v1;T ) = 0,
weightk(v2; Γ∗)× length(v2;T ) = length(v2;T ) = length(v1;T )− 1 by (6), and
weightk(v; Γ∗)× length(v;T ) = weightk(v; Γ′)× length(v;T ) (v 6= v1, v2)
imply that

ωk(Γ∗, T ) ≤ ωk(Γ′, T )− 1.



180 T. Nagase and A. Shima

This contradicts that Γ′ is ωk-minimal. Therefore ωk(Γ′, T ) = 0. 2

6. Proof of Main Theorem

Proof of Theorem 1. Suppose that a chart Γ is zero at label k. Then there exists
a chart Γ′ ∈ Ω(Γk; Γ) such that Γ′ is ωk-minimal. Since Γ is zero at label k, the
chart Γ′ is zero at label k, too. Let E be a disk containing the chart Γ′ in its
inside, i.e. IntE ⊃ Γ′. By Lemma 10 there exists a dual tree T with respect to
Γk with ωk(Γ′, T ) = 0. Namely BW(

⋃∞
i=k+1 Γ′i) is contained in the unbounded

complementary domain U of Γk. Now U ∩ Γk = ∅. Since Γ′ ∈ Ω(Γk; Γ), the set
U ∩(Γ′k−Γk) is contained in the union of basic movable disks of label k with respect
to U and Γ′. Furthermore, since E ∩ U is connected, by the same way as the one
in Lemma 9 there exists a disk D+ in E such that

(1) D+ is in general position with respect to Γ′,

(2) D+ ∩ ∂E is an arc,

(3) ∂D+ ∩ Γ′k = ∅, and

(4) BW(Γ′) ∩D+ = BW(
⋃∞

i=k+1 Γ′i).

Let D− = Cl(E −D+) and J = D− ∩D+. Then we have

(5) D− ∩ BW(
⋃∞

i=k+1 Γ′i) = ∅ and D+ ∩ BW(
⋃k

i=1 Γ′i) = ∅ by (4),

(6) Cl(∂D+ − J) ∩ Γ′ ⊂ ∂E ∩ Γ′ = ∅ by IntE ⊃ Γ′,

(7) J ∩ Γ′k ⊂ ∂D+ ∩ Γ′k = ∅ by (3).

Hence the triplet (D−, D+, J) is a separating system at label k for Γ′. By Lemma 7
there exists a chart Γ′′ ∈ Fix(Γk; Γ) obtained from Γ′ by applying surgeries along
subarcs of J such that

(8) Γ′′k = Γ′k,

(9) Γ′′ does not possess any (D+, J)-arcs of label less than k nor (D−, J)-arcs of
label greater than k,

(10) D− ∩ BW(
⋃∞

i=k+1 Γ′′i ) = ∅ and D+ ∩ BW(
⋃k

i=1 Γ′′i ) = ∅ by (5).

Now Γ′′ ∈ Fix(Γk; Γ) implies that

(11) Γ′′ is zero at label k.

Hence Γ′′k ∩ Γ′′k+1 = ∅. Thus (10) and ∂(D− ∪D+) ∩ Γ′′ = ∂E ∩ Γ′′ = ∅ imply that

(12) for each label i with i ≤ k if a connected component of Γ′′i ∩D+ intersects J ,
then the component is a (D+, J)-arc,

(13) for each label i with k < i if a connected component of Γ′′i ∩D− intersects J ,
then the component is a (D−, J)-arc.



Separating a Chart 181

Since J ∩Γ′′k = J ∩Γ′k = ∅ by (7) and (8), we have J ∩Γ′′ = ∅ by (9), (12) and (13).
Thus (∂D+ − J) ⊂ ∂E implies

∂D+ ∩ Γ′′ = ∅.

Let Γ∗ = D− ∩ Γ′′ and Γ∗∗ = D+ ∩ Γ′′. Then Γ′′ is the product of Γ∗ and Γ∗∗.
Since Γ′′ is zero at label k by (11), there exist two labels i and j with i ≤ k < j,
w(Γ′′i ) 6= 0 and w(Γ′′j ) 6= 0. Namely w(Γ∗) > 0 and w(Γ∗∗) > 0. Now (10) implies

w(Γ∗i ) = 0 for all label i with k < i, and

w(Γ∗∗i ) = 0 for all label i with i ≤ k.

Therefore Γ′′ is separable at label k. It is clear that Γ′′ and Γ are same C-type.
Conversely if Γ is separable at label k, then the chart Γ is clearly zero at label

k. Thus we have done. 2

Lemma 11.([10, Lemma 6.1, Proposition 6.6 and Proposition 6.11]) Let Γ be a
minimal chart of type (n1, n2, · · · , np). Then we have the following:

(a) n1 > 1 and np > 1.

(b) If n1 = 2 (resp. np = 2), then n2 > 1 (resp. np−1 > 1).

(c) If n1 = 3 (resp. np = 3), then n2 > 1 (resp. np−1 > 1).

Proof of Corollary 2. Let Γ be a minimal chart with w(Γ) = 8. Suppose that Γ is
zero at label k. Then by Theorem 1 there exists a chart Γ′ with the same C-type
of Γ which is separable at label k. Here w(Γ′) = w(Γ). Hence there exist two
subcharts Γ∗, Γ∗∗ such that

(1) Γ′ is the product of Γ∗ and Γ∗∗,

(2) w(Γ∗) 6= 0 and w(Γ∗∗) 6= 0.

Then we have

(3) w(Γ∗) + w(Γ∗∗) = w(Γ′) = 8.

If either Γ∗ or Γ∗∗ is not minimal, then Γ′ is C-move equivalent to a chart Γ′′

with w(Γ′′) < w(Γ′) = w(Γ). Namely the chart Γ is C-move equivalent to Γ′′. This
contradicts the fact that Γ is minimal. Hence the two charts Γ∗ and Γ∗∗ are minimal.
Since there does not exist a minimal chart with at most three white vertices, we
have w(Γ∗) ≥ 4 and w(Γ∗∗) ≥ 4. Thus by (3), we have w(Γ∗) = 4 and w(Γ∗∗) = 4.
By Lemma 11(a) and (b), each of Γ∗ and Γ∗∗ is of type (4) or (2, 2). Therefore we
complete the proof of Corollary 2. 2

Proof of Corollary 3. Let Γ be a minimal n-chart with w(Γ) = 8 of type
(n1, n2, · · · , np) such that Γ is not zero at any label. Then

(1) n1 + n2 + · · ·+ np = w(Γ) = 8,

(2) ni ≥ 1 for each i (1 ≤ i ≤ p).
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By Lemma 11(a), we have n1 ≥ 2 and np ≥ 2. If necessary we change all the edges
of label k to ones of label n− k for each k = 1, 2, · · · , n− 1 simultaneously, we can
assume that

(3) n1 ≥ np ≥ 2.

There are four cases: (i) p = 1 or 2, (ii) p = 3, (iii) p = 4, (iv) p ≥ 5.
Case (i). If p = 1, then Γ is of type (8). If p = 2, then by (1) and (3) we have that
the chart Γ is of type (6, 2), (5, 3) or (4, 4).
Case (ii). Suppose p = 3. If n3 = 2 or 3, then n2 = np−1 ≥ 2 by Lemma 11(b)
and (c). Thus by (1) and (3) we have that the chart Γ is of type (4, 2, 2), (3, 3, 2),
(2, 4, 2) or (3, 2, 3).

If n3 ≥ 4, then by (2) and (3) we have that w(Γ) = n1 +n2 +n3 ≥ 4+1+4 = 9.
This contradicts the fact w(Γ) = 8.
Case (iii). Suppose p = 4. If n4 = 2 or 3, then n3 = np−1 ≥ 2 by Lemma 11(b)
and (c). Thus by (1), (2) and (3) we have that the chart Γ is of type (2, 2, 2, 2),
(2, 1, 3, 2) or (3, 1, 2, 2). However if n1 = 2 or 3, then n2 ≥ 2 by Lemma 11(b) and
(c). Hence Γ is of type (2, 2, 2, 2).

If n4 ≥ 4, then by (2) and (3) we have that w(Γ) = n1 + n2 + n3 + n4 ≥
4 + 1 + 1 + 4 = 10. This contradicts the fact w(Γ) = 8.
Case (iv). Suppose p ≥ 5. There are two cases: (iv-1) np = 2 or 3, (iv-2) np ≥ 4.
Cases (iv-1). We have np−1 ≥ 2 by Lemma 11(b) and (c). Thus by (2), (3)
we have that w(Γ) = n1 + n2 + · · · + np−1 + np ≥ n1 + n2 + n3 + np−1 + np ≥
n1 + n2 + 1 + 2 + 2 = n1 + n2 + 5. Hence

w(Γ) ≥ n1 + n2 + 5.

If n1 = 2, then n2 ≥ 2 by Lemma 11(b). Thus w(Γ) ≥ 2 + 2 + 5 = 9. This
contradicts the fact w(Γ) = 9.

If n1 ≥ 3, then by (2) we have w(Γ) ≥ 3 + 1 + 5 = 9. This contradicts the fact
w(Γ) = 9.
Cases (iv-2). Since np ≥ 4, by (2) and (3) we have that w(Γ) = n1 + n2 + · · · +
np−1 + np ≥ n1 + n2 + n3 + np−1 + np ≥ 4 + 1 + 1 + 1 + 4 = 11. This contradicts
the fact w(Γ) = 9. 2

A chart Γ belongs to the first class provided that

(i) w(Γ) is odd, and

(ii) there does not exist a minimal chart Γ′ such that w(Γ′) is odd and less than
w(Γ).

Corollary 12. If a minimal chart belongs to the first class, then the chart is not
zero at any label. Namely if the type of the chart is (m;n1, n2, · · · , np), then for
each i = 1, 2, · · · , p, we have ni 6= 0.

Proof. Let Γ be a minimal chart belonging to the first class. Suppose that the chart
is zero at label k. Then by Theorem 1 there exists a chart Γ′ with the same C-type
of Γ which is separable at label k. Thus there exist subcharts Γ∗ and Γ∗∗ such that
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(1) Γ′ is the product of the two charts Γ∗ and Γ∗∗,

(2) w(Γ∗) 6= 0 and w(Γ∗∗) 6= 0.

Then we have

(3) w(Γ∗) + w(Γ∗∗) = w(Γ′).

Since Γ′ and Γ are same C-type, we have w(Γ′) = w(Γ). Since Γ belongs to the first
class, we have that w(Γ′)(= w(Γ)) is odd. Thus w(Γ∗) or w(Γ∗∗) is odd less than
w(Γ). Since Γ belongs to the first class, either Γ∗ or Γ∗∗ is not a minimal chart.
Hence Γ′ is C-move equivalent to a chart Γ′′ with w(Γ′′) < w(Γ′) = w(Γ). Namely
the chart Γ is C-move equivalent to Γ′′. This contradicts the fact that Γ is minimal.
Therefore Γ is not zero at any label. 2

Proof of Corollary 4. There does not exist a minimal chart Γ with w(Γ) = 1, 2, or 3.
Further there does not exist a minimal chart Γ with w(Γ) = 5 ([16]). Furthermore
there does not exist a minimal chart Γ with w(Γ) = 7 ([9], [10], [11], [12], [13]).
Hence any chart with nine white vertices belongs to the first class. Thus any
minimal chart with nine white vertices is not zero at any label by Corollary 12.

Let Γ be a minimal chart with w(Γ) = 11. Suppose that Γ is zero at label k.
Then by Theorem 1 there exists a chart Γ′ with the same C-type of Γ which is
separable at label k. Here w(Γ′) = w(Γ). Hence there exist two subcharts Γ∗, Γ∗∗

such that

(1) Γ′ is the product of the two charts Γ∗ and Γ∗∗,

(2) w(Γ∗) 6= 0 and w(Γ∗∗) 6= 0.

Then we have

(3) w(Γ∗) + w(Γ∗∗) = w(Γ′) = 11.

There are five cases:

(i) one of w(Γ∗) and w(Γ∗∗) equals 1 and the other equals 10,

(ii) one of w(Γ∗) and w(Γ∗∗) equals 2 and the other equals 9,

(iii) one of w(Γ∗) and w(Γ∗∗) equals 3 and the other equals 8,

(iv) one of w(Γ∗) and w(Γ∗∗) equals 4 and the other equals 7, and

(v) one of w(Γ∗) and w(Γ∗∗) equals 5 the other equals 6.

But in any case, either Γ∗ or Γ∗∗ is not minimal. Hence Γ′ is C-move equivalent to
a chart Γ′′ with w(Γ′′) < w(Γ′) = w(Γ). Namely the chart Γ is C-move equivalent
to Γ′′. This contradicts the fact that Γ is minimal. Therefore any minimal chart Γ
with w(Γ) = 11 is not zero at any label. 2

Proof of Corollary 5. Let Γ be a minimal n-chart with w(Γ) = 9 of type
(n1, n2, · · · , np). Then
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(1) n1 + n2 + · · ·+ np = w(Γ) = 9.

By Corollary 4, we have

(2) ni ≥ 1 for each i (1 ≤ i ≤ p).

By Lemma 11(a), we have n1 ≥ 2 and np ≥ 2. If necessary we change all the edges
of label k to ones of label n− k for each k = 1, 2, · · · , n− 1 simultaneously, we can
assume that

(3) n1 ≥ np ≥ 2, and

(4) if n1 = np and p ≥ 4, then n2 ≥ np−1.

If p = 1, then Γ is of type (9). If p = 2, then by (1) and (3) the chart Γ is of
type (7, 2), (6, 3) or (5, 4).

Suppose p ≥ 3. There are two cases: (i) np = 2 or 3, (ii) np ≥ 4.

Case (i). By Lemma 11(b) and (c), we have np−1 ≥ 2. There are four cases: (i-1)
p = 3, (i-2) p = 4, (i-3) p = 5, (i-4) p ≥ 6.

Case (i-1). Suppose p = 3. By (1), (3) and n2 = np−1 ≥ 2, the chart Γ is of type
(5, 2, 2), (4, 3, 2), (3, 4, 2), (2, 5, 2), (4, 2, 3) or (3, 3, 3).

Case (i-2). Suppose p = 4. If n1 = 2 or 3, then n2 ≥ 2 by Lemma 11(b) and
(c). Thus by (1), (3), (4) and n3 = np−1 ≥ 2, the chart Γ is of type (2, 3, 2, 2) or
(3, 2, 2, 2).

If n1 = 4, by (1), (2), (3) and n3 = np−1 ≥ 2, then Γ is of type (4, 1, 2, 2)

If n1 ≥ 5, then by (2), (3) and n3 = np−1 ≥ 2, we have w(Γ) = n1+n2+n3+n4 ≥
5 + 1 + 2 + 2 = 10. This contradicts the fact w(Γ) = 9.

Case (i-3). Suppose p = 5. If n1 = 2, then n2 ≥ 2 by Lemma 11(b). Thus by (1),
(2), (3) and n4 = np−1 ≥ 2, we have that the chart Γ is of type (2, 2, 1, 2, 2).

If n1 = 3, then n2 ≥ 2 by Lemma 11(c). Thus by (2), (3) and n4 = np−1 ≥ 2
we have w(Γ) = n1 + n2 + n3 + n4 + n5 ≥ 3 + 2 + 1 + 2 + 2 = 10. This contradicts
the fact w(Γ) = 9.

If n1 ≥ 4, then by (2), (3) and n4 = np−1 ≥ 2 we have w(Γ) = n1 + n2 + n3 +
n4 + n5 ≥ 4 + 1 + 1 + 2 + 2 = 10. This contradicts the fact w(Γ) = 9.

Case (i-4). Suppose p ≥ 6. If n1 = 2 or 3, then n2 ≥ 2 by Lemma 11(b) and
(c). Thus by (2), (3) and np−1 ≥ 2, we have w(Γ) = n1 + n2 + · · · + np−1 + np ≥
n1 + n2 + n3 + n4 + np−1 + np ≥ 2 + 2 + 1 + 1 + 2 + 2 = 10. This contradicts the
fact w(Γ) = 9.

If n1 ≥ 4, then by (2), (3) and np−1 ≥ 2 we have w(Γ) = n1 +n2 + · · ·+np−1 +
np ≥ n1 + n2 + n3 + n4 + np−1 + np ≥ 4 + 1 + 1 + 1 + 2 + 2 = 11. This contradicts
the fact w(Γ) = 9.

Case (ii). If p = 3, then by (1), (2) and (3) we have Γ is of type (4, 1, 4).

If p ≥ 4, then by (2) and (3) we have w(Γ) = n1 + n2 + · · · + np−1 + np ≥
n1 + n2 + n3 + np ≥ 4 + 1 + 1 + 4 = 10. This contradicts the fact w(Γ) = 9. 2
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