DOI QR코드

DOI QR Code

Relations between Regular Uni-soft Filters and Uni-soft MV - filters in Residuated Lattices

  • Muhiuddin, Ghulam (Department of Mathematics, University of Tabuk) ;
  • Park, Chul Hwan (School of Digital Mechanics, Ulsan College) ;
  • Jun, Young Bae (The Research Institute of Natural Science, Department of Mathematics Education, Gyeongsang National University)
  • 투고 : 2014.09.11
  • 심사 : 2016.01.21
  • 발행 : 2017.03.23

초록

The notions of regular uni-soft filters, uni-soft MV -filters and Boolean uni-soft filters are introduced, and related properties are investigated. Characterizations of regular uni-soft filters, uni-soft MV -filters and Boolean uni-soft filters are discussed.Relations between regular uni-soft filters and uni-soft MV -filters are considered. It is shown that the notion of a uni-soft MV -filter coincides with the notion of a regular uni-soft filter in BL-algebras.

키워드

참고문헌

  1. U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463. https://doi.org/10.1016/j.camwa.2010.03.034
  2. S. S. Ahn, N. O. Alshehri and Y. B. Jun, Int-soft filters of BE-algebras, Discrete Dyn. Nat. Soc., 2013, Art. ID 602959, 8 pp.
  3. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  4. A. O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(2011), 592-601. https://doi.org/10.1016/j.camwa.2010.12.005
  5. R. Belohlavek, Some properties of residuated lattices, Czechoslovak Math. J., 53(123)(2003), 161-171. https://doi.org/10.1023/A:1022935811257
  6. N. Cagman and S. Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207(2010), 848-855. https://doi.org/10.1016/j.ejor.2010.05.004
  7. F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124(2001), 271-288. https://doi.org/10.1016/S0165-0114(01)00098-7
  8. F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl., 56(2008), 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  9. P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Press, Dordrecht, 1998.
  10. Y. B. Jun, Soft BCK=BCI-algebras, Comput. Math. Appl., 56(2008), 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  11. Y. B. Jun, Union-soft sets with applications in BCK=BCI-algebras, Bull. Korean Math. Soc., 50(6)(2013), 1937-1956. https://doi.org/10.4134/BKMS.2013.50.6.1937
  12. Y. B. Jun, S. S. Ahn and K. J. Lee, Intersection-soft filters in $R_0$-algebras, Discrete Dyn. Nat. Soc., 2013, Art. ID 950897, 7 pp.
  13. Y. B. Jun, K. J. Lee and C. H. Park, Soft set theory applied to ideals in d-algebras, Comput. Math. Appl., 57(2009), 367-378. https://doi.org/10.1016/j.camwa.2008.11.002
  14. Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060-2068. https://doi.org/10.1016/j.camwa.2009.07.072
  15. Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci., 178(2008), 2466-2475.
  16. Y. B. Jun and S. Z. Song, Uni-soft filters and uni-soft G-filters in residuated lattices, J. Comput. Anal Appl., 20(2)(2016), 319-334.
  17. Y. B. Jun, S. Z. Song and S. S. Ahn, Union soft sets applied to commutative BCI-algerbas, J. Comput. Anal Appl., 16(3)(2014), 468-477.
  18. P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44(2002), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  19. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37(1999), 19-31.
  20. C. H. Park, Y. B. Jun and M. A. Ozturk, Soft WS-algebras, Commun. Korean Math. Soc., 23(2008), 313-324. https://doi.org/10.4134/CKMS.2008.23.3.313
  21. J. G. Shen and X. H. Zhang, Filters of residuated lattices, Chin. Quart. J. Math., 21(2006), 443-447.
  22. E. Turunen, BL-algebras of basic fuzzy logic, Mathware & Soft Computing, 6(1999), 49-61.
  23. E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Logic, 40(2001), 467-473. https://doi.org/10.1007/s001530100088
  24. J. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(2010), 2037-2046. https://doi.org/10.1016/j.camwa.2009.12.008
  25. X. H. Zhang and W. H. Li, On fuzzy logic algebraic system MTL, Adv. Syst. Sci. Appl., 5(2005), 475-483.
  26. Y. Q. Zhu and Y. Xu, On filter theory of residuated lattices, Inform. Sci., 180(2010), 3614-3632. https://doi.org/10.1016/j.ins.2010.05.034