DOI QR코드

DOI QR Code

Microstrip Antenna using Multi-layer and Folded Structure for GPS Application

적층 폴디드 구조를 이용한 GPS용 마이크로스트립 안테나

  • Keum, Jae-min (Dept. of Radio Science and Engineering, Univ. of Chungnam) ;
  • Woo, Jong-myung (Dept. of Radio Science and Engineering, Univ. of Chungnam)
  • Received : 2017.03.17
  • Accepted : 2017.04.18
  • Published : 2017.04.30

Abstract

In this paper, microstrip antenna using multi-layer and folded structure for GPS application is presented for aircraft loading. Existing microstrip patch antenna used dielectric of high specific inductive capacity to miniaturize that cause smaller bandwidth and decline of efficiency due to dielectric loss. To compensate the existing flaws, Rogers TMM 10i(dielectric constant=9.8, loss tangent=0.002) is used for multi-layer dielectric miniaturization, and we construct folded radiating element on the surface of the dielectric applying perturbation effect. The antenna is designed in the bandwidth of GPS $L_1$ band, and the size of the antenna's radiating element is $20.3mm{\times}19.93mm$, and it gets 94.2% miniaturized characteristic of basic ${\lambda}/2$ microstrip patch antenna. Also the measured -10 dB bandwidth is 32.3 MHz(2.05%), 3 dB axial ratio bandwidth is 6.7 MHz(0.43%). Measured radiation patterns was maximum gain of 0.56 dBi at x axis polarization, 1.23 dBi at y axis polarization.

본 논문에서는 비행체 탑재용으로 안테나의 소영화를 위해 GPS용 적층형 폴디드 마이크로스트립 패치 안테나를 제안하였다. 기존의 소형화된 마이크로스트립 패치 안테나는 고비 유전율의 유전체를 이용한 소형화로 유전체 손실에 의해 대역폭이 작아지고 효율저하가 발생하게 된다. 제안된 안테나는 기존의 단점을 보완하는 소형화를 위해 먼저 Rogers사 TMM 10i(비유전율=9.8, 손실탄젠트=0.002) 유전체를 이용하였고, 다음으로 perturbation 효과를 적용시킨 방사소자를 유전체 표면에 폴디드 구조로 구현하였다. 이렇게 GPS $L_1$대역에서 설계된 안테나의 방사소자 크기는 $20.3mm{\times}19.93mm$를 가지며, 기본 반파장 마이크로스트립 패치 원편파 안테나보다 94.2% 소형화 특성을 얻었다. 또한 -10 dB 대역폭의 경우 32.3 MHz(2.05%), 3 dB 축비 대역폭의 경우 6.7 MHz(0.43%)로 측정되었다. 방사패턴 측정 결과 최대이득은 x축 편파에서 0.56 dBi, y축 편파에서 1.23 dBi을 얻었다.

Keywords

References

  1. Hyundai News, http://www.hyundainews.com/us/en/media/pressreleases/47087/hyundai-motor-sho
  2. KARI, https://www.kari.re.kr/kor/sub07_02_04_01.do, 2017.2.25.
  3. Keum J. M., Ko D. O., Jung J. Y. and Woo J. M.(2016), "Miniaturized ${\lambda}$/4 Folded Microstrip Antenna for Parking Monitoring Base Station System," Journal of The Korea Institute of Intelligent Transportation System, vol. 15, no. 2, pp.95-101.
  4. Kim Y. R. and Woo J. M.(2012), "Electrically tunable small microstrip antenna using interdigital plate loading for telemetry sensor applications," Electronics Letters., vol. 48, pp.422-423. https://doi.org/10.1049/el.2011.3885
  5. Lee K. F. and Tong K. F.(2012), "Microstrip patch antennas-basic characteristics ad some recent advances," Proceedings of the IEEE, vol. 100, no. 7, pp.2169-2180. https://doi.org/10.1109/JPROC.2012.2183829
  6. Pozar D. M. and Schauert D. H.(1995), Microstrip Antennas, Wiley-Interscience, p.421.
  7. Song M. H. and Woo J. M.(2003), "Miniaturization of microstrip patch antenna using perturbation of radiating slot," Electronics Lett., vol. 39, pp.417-419. https://doi.org/10.1049/el:20030260
  8. wcases-autonomous-technology-at-the-2017-consumer-electronics-show-in-las-vegas, 2017.1.4.