DOI QR코드

DOI QR Code

무노즐 부스터 적용을 위한 HTPB/AP/Zr계 고체 추진제의 연소속도 증진 연구

Study on the Burning Rate Enhancement of HTPB/AP/Zr Solid Propellants for Nozzleless Boosters

  • Lee, Sunyoung (Project 2 Team, PGM Tech R&D Lab, LIG Nex1 Co., Ltd.) ;
  • Ryu, Taeha (Project 2 Team, PGM Tech R&D Lab, LIG Nex1 Co., Ltd.) ;
  • Hong, Myungpyo (Project 2 Team, PGM Tech R&D Lab, LIG Nex1 Co., Ltd.) ;
  • Lee, Hyoungjin (Department of Aerospace Engineering, Inha University)
  • 투고 : 2017.01.22
  • 심사 : 2017.03.14
  • 발행 : 2017.04.01

초록

무노즐 부스터에 사용하는 추진제의 연소특성에 관한 연구를 수행하였다. 밀도비추력을 향상키기기 위하여 고체 추진제의 조성에 Al와 Zr의 금속연료들이 도입되었으며 무노즐 부스터를 설계하기 위하여 낮은 압력지수 및 고 연소속도가 추진제의 주요 연소특성으로 연구되었다. Zr을 함유하는 추진제는 Al을 함유하는 추진제보다 높은 연소속도를 보였으며, $13{\mu}m$ Zr을 함유하는 추진제는 연소속도는 35 mm/s (at 1000 psi)와 압력지수 0.3282를 보였다. 이러한 결과로부터, 무노즐 부스터에서 Al와 Zr을 함유하는 추진제를 사용하는 이점을 보였다.

The study for the combustion characteristics of propellants for nozzleless boosters was carried out. The metal fuels of Al and Zr were introduced into solid propellant formulations in order to enhance the density-specific impulse and the high burning rate with low pressure exponent was investigated as the major combustion characteristic of propellant to design nozzleless boosters. The burning rate of Zr-containing propellant was higher than Al-containing propellant and, $13{\mu}m$ Zr-containing propellant exhibited the burning rate of 35 mm/s (at 1000 psi)and pressure exponent of 0.3282. The benefit of using Al and Zr-containing propellant into nozzleless boosters was demonstrated in these results.

키워드

참고문헌

  1. Webster, F.F., "Liquid Fueled Integral Rocket Ramjet Technology Review," 14th AIAA/SAE Joint Propulsion Conference, Las Vegas, N.V., U.S.A., Jul. 1978.
  2. Webster, F.F., "Integral Rocket/Ramjet Propulsion-Flight Data Correlation and Analysis Techniques," Journal of Spacecraft, Vol. 19, No. 4, pp. 326-336, 1981.
  3. Glassman, I., Combustion, 2nd edition, From review by Vic. A. Cundy, Louisiana State Univ., in Environmental Progress, Vol. 12, No. 2, Academic Press, Inc., Orlando, F.L., U.S.A., 1987.
  4. Procinsky, I.M. and McHale, C.A., "Nozzleless Boosters for Integral Rocket Ramjet Systems," Journal of Spacecraft and Rockets, Vol. 18, No. 3, pp. 193-199, 1981. https://doi.org/10.2514/3.57804
  5. Farinaccio, R. and Lessard, R., "Nozzleless Booster Performance Study," Technical Report, DREV TR 2001-285, 2011.
  6. Farinaccio, R. and Lessard, R., "Experimental Investigation of High Burn Rate Propellant for use in Nozzleless Boosters," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, A.L., U.S.A., AIAA 2000-3320, Jul. 2010.
  7. Ghosh, K., Behera, S., Kumar A., Padale, B.G., Deshpande, D.G., Kumar, A. and Gupta, M., "Studies on Aluminized, High Burning Rate, $Butacene^{(R)}$ Based, Composite Propellants," Central European Journal of Energetic Materials, Vol. 11, No. 3, pp. 323-333, 2014.
  8. Min, B.S. and Hyun, H.S., "Study on Combustion Characteristics of HTPB/AP Propellants Containing Zirconium," J. PROPULSION, Vol. 28, No. 1,: Technical Note, pp. 211-213, 2012. https://doi.org/10.2514/1.B34120
  9. Oberth, A.E., Principles of Solid Propellant Development, CPIA Publication, Baltimore, M.D., U.S.A., Ch 5, 1987.
  10. Yim, Y.J., Park, E.J., Kwon, T.H. and Choi, S.H., "Effect of AP Particle Size on the Physical Properties of HTPB/AP Propellant," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 1, pp. 14-19, 2016. https://doi.org/10.6108/KSPE.2016.20.1.014
  11. Dokan, A., Price E.W., Seitzman, J.M. and Sigman, R.K., "The Ignition of Aluminum in Ammonium Perchlorate Solid Propellant Flames," 39th Joint Propulsion Conference, Huntsville, A.L., U.S.A., AIAA-2003-4810, Jul. 2003.
  12. Min, B.S., Hyun, H.S. and Yim, Y.J., "Combustion Characteristics of HTPB/AP/Zr Propellant," Journal of the Korean Society of Propulsion Engineers, Vol. 9, No. 2, pp. 61-65, 2005.
  13. Oyumi Y., Brill T.B., Rheingold A.L. and Haller T.M., "Crystal Structure and Molecular Dynamics of the Energetic Nitramine 1,3,5,5-tetranitrohexahydropyrimidine and a Comparison with 1,3,3,5,7,7-hexanitro-1,5-diazacyclooctane and 1,3,3-trinitroazetidine," The Journal of Physical Chemistry, Vol. 89, No. 20, pp. 4317-4324, 1985. https://doi.org/10.1021/j100266a033