DOI QR코드

DOI QR Code

장갑 차량의 방사율 제어구조 적용에 따른 적외선 신호 분석

Infrared Signature Analysis on Armored Vehicle Applied with Emissivity Controlled Structure

  • 김태일 (연세대학교 기계공학과) ;
  • 김태환 (연세대학교 기계공학과) ;
  • 배지열 (연세대학교 기계공학과) ;
  • 정대윤 (국방과학연구소 제3기술연구본부) ;
  • 조형희 (연세대학교 기계공학과)
  • Kim, Taeil (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Kim, Taehwan (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Bae, Ji-Yeul (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Jung, Daeyoon (The 3rd Research and Development Institute, Agency for Defense Development) ;
  • Cho, Hyung Hee (Department of Mechanical Engineering, Yonsei Univ.)
  • 투고 : 2017.02.14
  • 심사 : 2017.03.06
  • 발행 : 2017.04.28

초록

적외선 유도 무기의 급속한 발달로 인해 현대 장갑 차량의 생존성은 크게 위협 받고 있다. 따라서 적외선 신호를 줄여 탐지가능성을 줄이는 것이 지상 장갑 차량의 생존성 향상을 위해 반드시 필요하다. 이러한 목적으로 본 연구는 수치해석을 사용해 차량 적외선 신호의 시간 및 탐지 위치별 특성을 분석하였다. 그 결과 가장 낮은 대비복사강도를 보이는 방사율이 시간 및 탐지 위치별로 상이하며 적외선 신호를 효과적으로 저감하기 위해서는 차량 부위별로 다른 방사율을 갖는 제어 구조를 적용해야 할 것이다.

Due to rapid development of infrared guided weapon, survivability of armored vehicle is severely threatened. Hence, reduction of susceptibility by lowering infrared signature level is essential to enhance survivability of the vehicle. For this purpose, numerical analysis is conducted to analyze time and spatial characteristics of infrared signature of the vehicle when surface emissivity changes in this study. The analysis shows that the emissivity which produces minimum contrast radiant intensity is significantly altered by time and detecting position. Based on the result, it is concluded that the controlled structures which have different emissivity should be adopted at different region of the vehicle to effectively decrease infrared signature level.

키워드

참고문헌

  1. Jacobs, P.A. (1989) NATO AC243 /P4.RSG17 on Land Combat Signature: Field Trial in Germany, General Overview of KRC Symposium, Michigan, Technological University.
  2. Jacobs, P.A. (2006) Thermal Infrared Characterization of Ground Targets and Backgrounds, SPIE Press, Bellingham, p.184.
  3. Kempinski, B., Murphy, C. (2012) Technical Challenges of the U.S. Army's Ground Combat Vehicle Program, 2012-15, Congressional Budget Office, Washington D.C, p.64.
  4. Kim, T., Lee H., Bae, J.Y., Kim, T., Cha, J.H., Jung, D., Cho, H.H. (2016) Susceptibility of Combat Aircraft Modeled as an Anisotropic Source of Infrared Radiation, IEEE Trans. Aerosp. & Electr. Syst., 52(6), pp.2467-2476. https://doi.org/10.1109/TAES.2016.150513
  5. Kim, T., Song, J., Cha, J.Y., Bae, J.Y., Jung, D., Cho, H.H. (2014) IR Characteristics of an Aircraft in Different Atmospheric/Background Conditions, Korea Inst. Mil.Sci. & Tech., 17(4), pp.456-462. https://doi.org/10.9766/KIMST.2014.17.4.456
  6. Westin, J., Olsson, O., Pettersson, L., Lindwall, P., Grop, A. (2003) Active Control of Infrared Signature: System Implementation in a Ground Vehicle, AeroSense 2003, International Society for Optics and Photonics, Proc. SPIE 5075, pp.39-48.
  7. White, J.R. (2012) Aircraft Infrared Principles, Signatures, Threats, and Countermeasures, NAWCWD TP 8773, Naval Air Warfare Center Weapons Division, Point Mugu, p.126.