References
- Bijnsdorp, I. V., Peters, G. J., Temmink, O. H., Fukushima, M. and Kruyt, F. A. (2010) Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int. J. Cancer 126, 2457-2468.
- Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
- Choi, C. H., Lee, T. B., Lee, Y. A., Choi, S. and Kim, K. J. (2011) Up-regulation of cyclooxygenase-2-derived prostaglandin E2 in colon cancer cells resistant to 5-fluorouracil. J. Korean Surg. Soc. 81, 115-121. https://doi.org/10.4174/jkss.2011.81.2.115
- Codogno, P., Mehrpour, M. and Proikas-Cezanne, T. (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7-12. https://doi.org/10.1038/nrn3125
- Dewaele, M., Maes, H. and Agostinis, P. (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854. https://doi.org/10.4161/auto.6.7.12113
-
Djavaheri-Mergny, M., Amelotti, M., Mathieu, J., Besancon, F., Bauvy, C., Souquere, S., Pierron, G. and Codogno, P. (2006)
$NF-{\kappa}B$ activation represses tumor necrosis factor-$\alpha$ -induced autophagy. J. Biol. Chem. 281, 30373-30382. https://doi.org/10.1074/jbc.M602097200 - Fan, C., Wang, W., Zhao, B., Zhang, S. and Miao, J. (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem. 14, 3218-3222. https://doi.org/10.1016/j.bmc.2005.12.035
- Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
- Gozuacik, D. and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906. https://doi.org/10.1038/sj.onc.1207521
- Grem, J. L. (2000) 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest. New Drugs 18, 299-313. https://doi.org/10.1023/A:1006416410198
- Jisun, L., Samantha, G. and Jianhua, Z. (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523-540. https://doi.org/10.1042/BJ20111451
- Jung, G. R., Kim, K. J., Choi, C. H., Lee, T. B., Han, S. I., Han, H. K. and Lim, S. C. (2007) Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin. Pharmacol. Toxicol. 101, 277-285. https://doi.org/10.1111/j.1742-7843.2007.00115.x
- Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
- Karantza-Wadsworth, V., Patel, S., Kravchuk, O., Chen, G., Mathew, R., Jin, S. and White, E. (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621-1635. https://doi.org/10.1101/gad.1565707
- Kang, K. A., Piao, M. J., Kim, K. C., Kang, H. K., Chang, W. Y., Park, I. C., Keum, Y. S., Surh, Y. J. and Hyun, J. W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells:involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183. https://doi.org/10.1038/cddis.2014.149
- Kim, A. D., Kang, K. A., Kim, H. S., Kim, D. H., Choi, Y. H., Lee, S. J. and Hyun, J. W. (2013) A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4, e750. https://doi.org/10.1038/cddis.2013.273
- Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H. and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res. 31, 151-156. https://doi.org/10.5487/TR.2015.31.2.151
- Kim, B. W., Kwon, D. H. and Song, H. K. (2016) Structure biology of selective autophagy receptors. BMB Rep. 49, 73-80. https://doi.org/10.5483/BMBRep.2016.49.2.265
- Ku, J. L. and Park, J. G. (2005) Biology of SNU cell lines. Cancer Res. Treat. 37, 1-19. https://doi.org/10.4143/crt.2005.37.1.1
- Lee, T. B. and Choi, C. H. (2009) Detection of drug transporter expression using a 25-multiplex RT-PCR assay. Biotechnol. Lett. 31, 1485-1492. https://doi.org/10.1007/s10529-009-0039-9
- Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T. and Kuwano, H. (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann. Surg. Oncol. 16, 761-771. https://doi.org/10.1245/s10434-008-0260-0
- Liu, E. Y. and Ryan, K. M. (2012) Autophagy and cancer-issues we need to digest. J. Cell Sci. 125, 2349-2358. https://doi.org/10.1242/jcs.093708
- Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338. https://doi.org/10.1038/nrc1074
- Mathew, R., Kongara, S., Beaudoin, B., Karp, C. M., Bray, K., Degenhardt, K., Chen, G., Jin, S. and White, E. (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367-1381. https://doi.org/10.1101/gad.1545107
- Morselli, E., Galluzzi, L., Kepp, O., Marino, G., Michaud, M., Vitale, I., Maiuri, M. C. and Kroemer, G. (2011) Oncosuppressive functions of autophagy. Antioxid. Redox Signal. 14, 2251-2269. https://doi.org/10.1089/ars.2010.3478
- Nordman, I. C., Iyer, S., Joshua, A. M. and Clarke, S. J. (2006) Advances in the adjuvant treatment of colorectal cancer. ANZ J. Surg. 76, 373-380. https://doi.org/10.1111/j.1445-2197.2006.03726.x
- Sasaki, K., Tsuno, N. H., Sunami, E., Kawai, K., Hongo, K., Hiyoshi, M., Kaneko, M., Murono, K., Tada, N., Nirei, T., Takahashi, K. and Kitayama, J. (2012) Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer Drugs 23, 675-682. https://doi.org/10.1097/CAD.0b013e328353f8c7
- Sasaki, K., Tsuno, N., Sunami, E., Tsurita, G., Kawai, K., Okaji, Y., Nishikawa, T., Shuno, Y., Hongo, K., Hiyoshi, M., Kaneko, M., Kitayama, J., Takahashi, K. and Nagawa, H. (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10, 370. https://doi.org/10.1186/1471-2407-10-370
- Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K. and Mizushima, N. (2011) Autophagy- deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800. https://doi.org/10.1101/gad.2016211
- Wu, M., Lao, Y., Xu, N., Wang, X., Tan, H., Fu, W., Lin, Z. and Xu, H. (2015) Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine 22, 902-910. https://doi.org/10.1016/j.phymed.2015.06.008
- Yorimitsu, T. and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542-1552. https://doi.org/10.1038/sj.cdd.4401765
Cited by
- Effect of mTHPC-mediated photodynamic therapy on 5-fluorouracil resistant human colorectal cancer cells vol.16, pp.7, 2017, https://doi.org/10.1039/C7PP00014F
- Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-017-0661-7
- 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-017-0662-6
- Overexpression of lamin B1 induces mitotic catastrophe in colon cancer LoVo cells and is associated with worse clinical outcomes vol.52, pp.1, 2018, https://doi.org/10.3892/ijo.2017.4182
- Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells vol.27, pp.5, 2017, https://doi.org/10.4062/biomolther.2019.107
- Redox-Mediated Mechanism of Chemoresistance in Cancer Cells vol.8, pp.10, 2017, https://doi.org/10.3390/antiox8100471
- Functions and Implications of Autophagy in Colon Cancer vol.8, pp.11, 2017, https://doi.org/10.3390/cells8111349
- Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer vol.15, pp.None, 2017, https://doi.org/10.2147/ijn.s229576
- Phase II Trial of Trifluridine/Tipiracil in Patients with Advanced, Refractory Biliary Tract Carcinoma vol.25, pp.5, 2020, https://doi.org/10.1634/theoncologist.2019-0874
- Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells vol.28, pp.5, 2017, https://doi.org/10.4062/biomolther.2020.003
- Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy vol.265, pp.None, 2017, https://doi.org/10.1016/j.lfs.2020.118745
- ROS/JNK/C-Jun Pathway is Involved in Chaetocin Induced Colorectal Cancer Cells Apoptosis and Macrophage Phagocytosis Enhancement vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.729367
- Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress vol.6, pp.14, 2017, https://doi.org/10.1172/jci.insight.138835
- Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment vol.10, pp.9, 2021, https://doi.org/10.3390/biology10090854
- S-Adenosylmethionine Increases the Sensitivity of Human Colorectal Cancer Cells to 5-Fluorouracil by Inhibiting P-Glycoprotein Expression and NF-κB Activation vol.22, pp.17, 2017, https://doi.org/10.3390/ijms22179286
- Casein Kinase-1-Alpha Inhibitor (D4476) Sensitizes Microsatellite Instable Colorectal Cancer Cells to 5-Fluorouracil via Authophagy Flux Inhibition vol.69, pp.1, 2017, https://doi.org/10.1007/s00005-021-00629-2
- Effect of DEHP and DnOP on mitochondrial damage and related pathways of Nrf2 and SIRT1/PGC-1α in HepG2 cells vol.158, pp.None, 2017, https://doi.org/10.1016/j.fct.2021.112696