DOI QR코드

DOI QR Code

Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells

  • Yao, Cheng Wen (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Kang, Kyoung Ah (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Piao, Mei Jing (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Ryu, Yea Seong (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Fernando, Pattage Madushan Dilhara Jayatissa (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Oh, Min Chang (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Park, Jeong Eon (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Shilnikova, Kristina (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University) ;
  • Na, Soo-Young (School of Medicine No.2, Jeju National University) ;
  • Jeong, Seung Uk (School of Medicine No.2, Jeju National University) ;
  • Boo, Sun-Jin (School of Medicine No.2, Jeju National University) ;
  • Hyun, Jin Won (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
  • Received : 2016.03.28
  • Accepted : 2016.07.19
  • Published : 2017.05.01

Abstract

We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5-FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells.

Keywords

References

  1. Bijnsdorp, I. V., Peters, G. J., Temmink, O. H., Fukushima, M. and Kruyt, F. A. (2010) Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int. J. Cancer 126, 2457-2468.
  2. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  3. Choi, C. H., Lee, T. B., Lee, Y. A., Choi, S. and Kim, K. J. (2011) Up-regulation of cyclooxygenase-2-derived prostaglandin E2 in colon cancer cells resistant to 5-fluorouracil. J. Korean Surg. Soc. 81, 115-121. https://doi.org/10.4174/jkss.2011.81.2.115
  4. Codogno, P., Mehrpour, M. and Proikas-Cezanne, T. (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7-12. https://doi.org/10.1038/nrn3125
  5. Dewaele, M., Maes, H. and Agostinis, P. (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854. https://doi.org/10.4161/auto.6.7.12113
  6. Djavaheri-Mergny, M., Amelotti, M., Mathieu, J., Besancon, F., Bauvy, C., Souquere, S., Pierron, G. and Codogno, P. (2006) $NF-{\kappa}B$ activation represses tumor necrosis factor-$\alpha$-induced autophagy. J. Biol. Chem. 281, 30373-30382. https://doi.org/10.1074/jbc.M602097200
  7. Fan, C., Wang, W., Zhao, B., Zhang, S. and Miao, J. (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem. 14, 3218-3222. https://doi.org/10.1016/j.bmc.2005.12.035
  8. Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  9. Gozuacik, D. and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906. https://doi.org/10.1038/sj.onc.1207521
  10. Grem, J. L. (2000) 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest. New Drugs 18, 299-313. https://doi.org/10.1023/A:1006416410198
  11. Jisun, L., Samantha, G. and Jianhua, Z. (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523-540. https://doi.org/10.1042/BJ20111451
  12. Jung, G. R., Kim, K. J., Choi, C. H., Lee, T. B., Han, S. I., Han, H. K. and Lim, S. C. (2007) Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin. Pharmacol. Toxicol. 101, 277-285. https://doi.org/10.1111/j.1742-7843.2007.00115.x
  13. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
  14. Karantza-Wadsworth, V., Patel, S., Kravchuk, O., Chen, G., Mathew, R., Jin, S. and White, E. (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621-1635. https://doi.org/10.1101/gad.1565707
  15. Kang, K. A., Piao, M. J., Kim, K. C., Kang, H. K., Chang, W. Y., Park, I. C., Keum, Y. S., Surh, Y. J. and Hyun, J. W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells:involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183. https://doi.org/10.1038/cddis.2014.149
  16. Kim, A. D., Kang, K. A., Kim, H. S., Kim, D. H., Choi, Y. H., Lee, S. J. and Hyun, J. W. (2013) A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4, e750. https://doi.org/10.1038/cddis.2013.273
  17. Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H. and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res. 31, 151-156. https://doi.org/10.5487/TR.2015.31.2.151
  18. Kim, B. W., Kwon, D. H. and Song, H. K. (2016) Structure biology of selective autophagy receptors. BMB Rep. 49, 73-80. https://doi.org/10.5483/BMBRep.2016.49.2.265
  19. Ku, J. L. and Park, J. G. (2005) Biology of SNU cell lines. Cancer Res. Treat. 37, 1-19. https://doi.org/10.4143/crt.2005.37.1.1
  20. Lee, T. B. and Choi, C. H. (2009) Detection of drug transporter expression using a 25-multiplex RT-PCR assay. Biotechnol. Lett. 31, 1485-1492. https://doi.org/10.1007/s10529-009-0039-9
  21. Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T. and Kuwano, H. (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann. Surg. Oncol. 16, 761-771. https://doi.org/10.1245/s10434-008-0260-0
  22. Liu, E. Y. and Ryan, K. M. (2012) Autophagy and cancer-issues we need to digest. J. Cell Sci. 125, 2349-2358. https://doi.org/10.1242/jcs.093708
  23. Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338. https://doi.org/10.1038/nrc1074
  24. Mathew, R., Kongara, S., Beaudoin, B., Karp, C. M., Bray, K., Degenhardt, K., Chen, G., Jin, S. and White, E. (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367-1381. https://doi.org/10.1101/gad.1545107
  25. Morselli, E., Galluzzi, L., Kepp, O., Marino, G., Michaud, M., Vitale, I., Maiuri, M. C. and Kroemer, G. (2011) Oncosuppressive functions of autophagy. Antioxid. Redox Signal. 14, 2251-2269. https://doi.org/10.1089/ars.2010.3478
  26. Nordman, I. C., Iyer, S., Joshua, A. M. and Clarke, S. J. (2006) Advances in the adjuvant treatment of colorectal cancer. ANZ J. Surg. 76, 373-380. https://doi.org/10.1111/j.1445-2197.2006.03726.x
  27. Sasaki, K., Tsuno, N. H., Sunami, E., Kawai, K., Hongo, K., Hiyoshi, M., Kaneko, M., Murono, K., Tada, N., Nirei, T., Takahashi, K. and Kitayama, J. (2012) Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer Drugs 23, 675-682. https://doi.org/10.1097/CAD.0b013e328353f8c7
  28. Sasaki, K., Tsuno, N., Sunami, E., Tsurita, G., Kawai, K., Okaji, Y., Nishikawa, T., Shuno, Y., Hongo, K., Hiyoshi, M., Kaneko, M., Kitayama, J., Takahashi, K. and Nagawa, H. (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10, 370. https://doi.org/10.1186/1471-2407-10-370
  29. Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K. and Mizushima, N. (2011) Autophagy- deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800. https://doi.org/10.1101/gad.2016211
  30. Wu, M., Lao, Y., Xu, N., Wang, X., Tan, H., Fu, W., Lin, Z. and Xu, H. (2015) Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine 22, 902-910. https://doi.org/10.1016/j.phymed.2015.06.008
  31. Yorimitsu, T. and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542-1552. https://doi.org/10.1038/sj.cdd.4401765

Cited by

  1. Effect of mTHPC-mediated photodynamic therapy on 5-fluorouracil resistant human colorectal cancer cells vol.16, pp.7, 2017, https://doi.org/10.1039/C7PP00014F
  2. Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-017-0661-7
  3. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-017-0662-6
  4. Overexpression of lamin B1 induces mitotic catastrophe in colon cancer LoVo cells and is associated with worse clinical outcomes vol.52, pp.1, 2018, https://doi.org/10.3892/ijo.2017.4182
  5. Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells vol.27, pp.5, 2017, https://doi.org/10.4062/biomolther.2019.107
  6. Redox-Mediated Mechanism of Chemoresistance in Cancer Cells vol.8, pp.10, 2017, https://doi.org/10.3390/antiox8100471
  7. Functions and Implications of Autophagy in Colon Cancer vol.8, pp.11, 2017, https://doi.org/10.3390/cells8111349
  8. Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer vol.15, pp.None, 2017, https://doi.org/10.2147/ijn.s229576
  9. Phase II Trial of Trifluridine/Tipiracil in Patients with Advanced, Refractory Biliary Tract Carcinoma vol.25, pp.5, 2020, https://doi.org/10.1634/theoncologist.2019-0874
  10. Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells vol.28, pp.5, 2017, https://doi.org/10.4062/biomolther.2020.003
  11. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy vol.265, pp.None, 2017, https://doi.org/10.1016/j.lfs.2020.118745
  12. ROS/JNK/C-Jun Pathway is Involved in Chaetocin Induced Colorectal Cancer Cells Apoptosis and Macrophage Phagocytosis Enhancement vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.729367
  13. Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress vol.6, pp.14, 2017, https://doi.org/10.1172/jci.insight.138835
  14. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment vol.10, pp.9, 2021, https://doi.org/10.3390/biology10090854
  15. S-Adenosylmethionine Increases the Sensitivity of Human Colorectal Cancer Cells to 5-Fluorouracil by Inhibiting P-Glycoprotein Expression and NF-κB Activation vol.22, pp.17, 2017, https://doi.org/10.3390/ijms22179286
  16. Casein Kinase-1-Alpha Inhibitor (D4476) Sensitizes Microsatellite Instable Colorectal Cancer Cells to 5-Fluorouracil via Authophagy Flux Inhibition vol.69, pp.1, 2017, https://doi.org/10.1007/s00005-021-00629-2
  17. Effect of DEHP and DnOP on mitochondrial damage and related pathways of Nrf2 and SIRT1/PGC-1α in HepG2 cells vol.158, pp.None, 2017, https://doi.org/10.1016/j.fct.2021.112696