DOI QR코드

DOI QR Code

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan (Department of Neurology, Ninth Hospital of Xi'an) ;
  • Ma, Yijie (Department of Neurological Surgery, Hospital of Xinjiang Production and Construction Corps) ;
  • Xin, Yinhu (Department of Encephalopathy, Shaanxi Traditional Chinese Medicine Hospital)
  • Received : 2016.05.09
  • Accepted : 2016.09.01
  • Published : 2017.05.01

Abstract

Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

Keywords

References

  1. Bojakowski, K., Abramczyk, P., Bojakowska, M., Zwolinska, A., Przybylski, J. and Gaciong, Z. (2001) Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. J. Physiol. Pharmacol. 52, 137-143.
  2. Boo, H. J., Hyun, J. H., Kim, S. C., Kang, J. I., Kim, M. K., Kim, S. Y., Cho, H., Yoo, E. S. and Kang, H. K. (2011) Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother. Res. 25, 1082-1086. https://doi.org/10.1002/ptr.3489
  3. Broughton, B. R., Reutens, D. C. and Sobey, C. G. (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40, e331-e339. https://doi.org/10.1161/STROKEAHA.108.531632
  4. Calcagni, E. and Elenkov, I. (2006) Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann. N. Y. Acad. Sci. 1069, 62-76. https://doi.org/10.1196/annals.1351.006
  5. Chang, Y., Hsiao, G., Chen, S. H., Chen, Y. C., Lin, J. H., Lin, K. H., Chou, D. S. and Sheu, J. R. (2007) Tetramethylpyrazine suppresses $HIF-1{\alpha}$, $TNF-{\alpha}$, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacol. Sin. 28, 327-333. https://doi.org/10.1111/j.1745-7254.2007.00514.x
  6. Chen, J., Wang, W., Zhang, Q., Li, F., Lei, T., Luo, D., Zhou, H. and Yang, B. (2013) Low molecular weight fucoidan against renal ischemia- reperfusion injury via inhibition of the MAPK signaling pathway. PLoS ONE 8, e56224. https://doi.org/10.1371/journal.pone.0056224
  7. Cui, Y. Q., Zhang, L. J., Zhang, T., Luo, D. Z., Jia, Y. J., Guo, Z. X., Zhang, Q. B., Wang, X. and Wang, X. M. (2010) Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol. 37, 422-428. https://doi.org/10.1111/j.1440-1681.2009.05314.x
  8. Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E.; Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552. https://doi.org/10.1093/glycob/cwm014
  9. Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A. M., Armstrong, D. L., Arnold, B., Liliensiek, B., Nawroth, P., Hofman, F., Kindy, M., Stern, D. and Zlokovic, B. (2003) RAGE mediates amyloid-$\beta$ peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907-913. https://doi.org/10.1038/nm890
  10. Do, H., Pyo, S. and Sohn, E. H. (2010) Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in $TNF-{\alpha}$- and $IFN-{\gamma}$-stimulated C6 glioma cells. J. Nutr. Biochem. 21, 671-679. https://doi.org/10.1016/j.jnutbio.2009.03.013
  11. Duan, Q., Wang, X., Wang, Z., Lu, T., Han, Y. and He, S. (2004) Role of mitochondria in neuron apoptosis during ischemia-reperfusion injury. J. Huazhong Univ. Sci. Technol. Med. Sci. 24, 441-444. https://doi.org/10.1007/BF02831103
  12. Eefting, F., Rensing, B., Wigman, J., Pannekoek, W. J., Liu, W. M., Cramer, M. J., Lips, D. J. and Doevendans, P. A. (2004) Role of apoptosis in reperfusion injury. Cardiovasc. Res. 61, 414-426. https://doi.org/10.1016/j.cardiores.2003.12.023
  13. Gao, Y., Dong, C., Yin, J., Shen, J., Tian, J. and Li, C. (2012) Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell. Mol. Neurobiol. 32, 523-529. https://doi.org/10.1007/s10571-011-9792-0
  14. Jean, W. C., Spellman, S. R., Nussbaum, E. S. and Low, W. C. (1998) Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43, 1382-1396; discussion 1396-1397.
  15. Jhamandas, J. H., Wie, M. B., Harris, K., MacTavish, D. and Kar, S. (2005) Fucoidan inhibits cellular and neurotoxic effects of $\beta$-amyloid ($A{\beta}$) in rat cholinergic basal forebrain neurons. Eur. J. Neurosci. 21, 2649-2659. https://doi.org/10.1111/j.1460-9568.2005.04111.x
  16. Jin, W., Wang, J., Jiang, H., Song, N., Zhang, W. and Zhang, Q. (2013a) The neuroprotective activities of heteropolysaccharides extracted from Saccharina japonica. Carbohydr. Polym. 97, 116-120. https://doi.org/10.1016/j.carbpol.2013.04.055
  17. Jin, W., Zhang, W., Wang, J., Yao, J., Xie, E., Liu, D., Duan, D. and Zhang, Q. (2014) A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species. Int. J. Biol. Macromol. 67, 336-342. https://doi.org/10.1016/j.ijbiomac.2014.03.031
  18. Jin, W., Zhang, W., Wang, J. and Zhang, Q. (2013b) The neuroprotective activities and antioxidant activities of the polysaccharides from Saccharina japonica. Int. J. Biol. Macromol. 58, 240-244. https://doi.org/10.1016/j.ijbiomac.2013.04.009
  19. Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. https://doi.org/10.1126/science.1072682
  20. Kim, K. J., Yoon, K. Y. and Lee, B. Y. (2012) Low molecular weight fucoidan from the sporophyll of Undaria pinnatifida suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells. Fitoterapia 83, 1628-1635. https://doi.org/10.1016/j.fitote.2012.09.014
  21. Kovalska, M., Kovalska, L., Pavlikova, M., Janickova, M., Mikuskova, K., Adamkov, M., Kaplan, P., Tatarkova, Z. and Lehotsky, J. (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem. Res. 37, 1568-1577. https://doi.org/10.1007/s11064-012-0752-y
  22. Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. and Shimeno, H. (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 65, 173-179. https://doi.org/10.1016/S0006-2952(02)01478-8
  23. Lakhan, S. E., Kirchgessner, A. and Hofer, M. (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J. Transl. Med. 7, 97. https://doi.org/10.1186/1479-5876-7-97
  24. Li, C., Gao, Y., Xing, Y., Zhu, H., Shen, J. and Tian, J. (2011) Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats via regulating the inflammation response. Food Chem. Toxicol. 49, 2090-2095. https://doi.org/10.1016/j.fct.2011.05.022
  25. Li, M., Qu, Y. Z., Zhao, Z. W., Wu, S. X., Liu, Y. Y., Wei, X. Y., Gao, L. and Gao, G. D. (2012) Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem. Int. 60, 458-465. https://doi.org/10.1016/j.neuint.2012.01.026
  26. Li, Y., Liu, L., Liu, D., Woodward, S., Barger, S. W., Mrak, R. E. and Griffin, W. S. (2004) Microglial activation by uptake of fDNA via a scavenger receptor. J. Neuroimmunol. 147, 50-55. https://doi.org/10.1016/j.jneuroim.2003.10.043
  27. Loddick, S. A., Turnbull, A. V. and Rothwell, N. J. (1998) Cerebral interleukin- 6 is neuroprotective during permanent focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 18, 176-179. https://doi.org/10.1097/00004647-199802000-00008
  28. Maruyama, H., Tamauchi, H., Hashimoto, M. and Nakano, T. (2003) Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo 17, 245-249.
  29. Muralikrishna Adibhatla, R. and Hatcher, J. F. (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40, 376-387. https://doi.org/10.1016/j.freeradbiomed.2005.08.044
  30. Nakka, V. P., Gusain, A., Mehta, S. L. and Raghubir, R. (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol. Neurobiol. 37, 7-38. https://doi.org/10.1007/s12035-007-8013-9
  31. Nilupul Perera, M., Ma, H. K., Arakawa, S., Howells, D. W., Markus, R., Rowe, C. C. and Donnan, G. A. (2006) Inflammation following stroke. J. Clin. Neurosci. 13, 1-8. https://doi.org/10.1016/j.jocn.2005.07.005
  32. Omata, M., Matsui, N., Inomata, N. and Ohno, T. (1997) Protective effects of polysaccharide fucoidin on myocardial ischemia-reperfusion injury in rats. J. Cardiovasc. Pharmacol. 30, 717-724. https://doi.org/10.1097/00005344-199712000-00003
  33. Paller, M. S., Hoidal, J. R. and Ferris, T. F. (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J. Clin. Invest. 74, 1156-1164. https://doi.org/10.1172/JCI111524
  34. Prokofjeva, M. M., Imbs, T. I., Shevchenko, N. M., Spirin, P. V., Horn, S., Fehse, B., Zvyagintseva, T. N. and Prassolov, V. S. (2013) Fucoidans as potential inhibitors of HIV-1. Mar. Drugs 11, 3000-3014. https://doi.org/10.3390/md11083000
  35. Speidel, D. (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 20, 14-24. https://doi.org/10.1016/j.tcb.2009.10.002
  36. Sugawara, T. and Chan, P. H. (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Signal. 5, 597-607. https://doi.org/10.1089/152308603770310266
  37. Terao, S., Yilmaz, G., Stokes, K. Y., Ishikawa, M., Kawase, T. and Granger, D. N. (2008) Inflammatory and injury responses to ischemic stroke in obese mice. Stroke 39, 943-950. https://doi.org/10.1161/STROKEAHA.107.494542
  38. Thuy, T. T., Ly, B. M., Van, T. T., Quang, N. V., Tu, H. C., Zheng, Y., Seguin-Devaux, C., Mi, B. and Ai, U. (2015) Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr. Polym. 115, 122-128. https://doi.org/10.1016/j.carbpol.2014.08.068
  39. Wang, J., Zhang, Q., Zhang, Z., Song, H. and Li, P. (2010) Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 46, 6-12. https://doi.org/10.1016/j.ijbiomac.2009.10.015
  40. Wang, Q., Tang, X. N. and Yenari, M. A. (2007) The inflammatory response in stroke. J. Neuroimmunol. 184, 53-68. https://doi.org/10.1016/j.jneuroim.2006.11.014
  41. Wong, C. H. and Crack, P. J. (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr. Med. Chem. 15, 1-14. https://doi.org/10.2174/092986708783330665
  42. Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y. and Kogure, K. (1995) Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26, 676-681. https://doi.org/10.1161/01.STR.26.4.676
  43. Yi, J. H., Park, S. W., Kapadia, R. and Vemuganti, R. (2007) Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem. Int. 50, 1014-1027. https://doi.org/10.1016/j.neuint.2007.04.019
  44. Zhou, H., Ma, Y., Zhou, Y., Liu, Z., Wang, K. and Chen, G. (2003) Effects of magnesium sulfate on neuron apoptosis and expression of caspase-3, bax and bcl-2 after cerebral ischemia-reperfusion injury. Chin. Med. J. 116, 1532-1534.

Cited by

  1. Anti-inflammatory effect of torilidis fructus ethanol extract through inhibition of Src vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1362011
  2. in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway vol.315, pp.3, 2018, https://doi.org/10.1152/ajpcell.00310.2017
  3. microRNA-21 Confers Neuroprotection Against Cerebral Ischemia-Reperfusion Injury and Alleviates Blood-Brain Barrier Disruption in Rats via the MAPK Signaling Pathway vol.65, pp.1, 2018, https://doi.org/10.1007/s12031-018-1067-5
  4. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides vol.10, pp.1664-3224, 2019, https://doi.org/10.3389/fimmu.2019.00145
  5. Antioxidant Properties of Fucoidan Alleviate Acceleration and Exacerbation of Hippocampal Neuronal Death Following Transient Global Cerebral Ischemia in High-Fat Diet-Induced Obese Gerbils vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030554
  6. Fucoidan Attenuates Perfluorooctane Sulfonate-induced Apoptosis of Neuronal Cells vol.9, pp.1, 2017, https://doi.org/10.15433/ksmb.2017.9.1.001
  7. Artemether suppresses cell proliferation and induces apoptosis in diffuse large B cell lymphoma cells vol.14, pp.5, 2017, https://doi.org/10.3892/etm.2017.5063
  8. Hyperoside protects against cerebral ischemia-reperfusion injury by alleviating oxidative stress, inflammation and apoptosis in rats vol.33, pp.1, 2017, https://doi.org/10.1080/13102818.2019.1620633
  9. Cryptotanshinone Attenuates Oxygen-Glucose Deprivation/ Recovery-Induced Injury in an in vitro Model of Neurovascular Unit vol.10, pp.None, 2017, https://doi.org/10.3389/fneur.2019.00381
  10. Inhibition of HDAC6 alleviating lipopolysaccharide-induced p38MAPK phosphorylation and neuroinflammation in mice vol.57, pp.1, 2017, https://doi.org/10.1080/13880209.2018.1563620
  11. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview vol.17, pp.12, 2017, https://doi.org/10.3390/md17120674
  12. miR-325-3p Protects Neurons from Oxygen-Glucose Deprivation and Reoxygenation Injury via Inhibition of RIP3 vol.42, pp.2, 2020, https://doi.org/10.1159/000509108
  13. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds vol.11, pp.None, 2017, https://doi.org/10.3389/fphys.2020.00433
  14. Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study vol.18, pp.3, 2017, https://doi.org/10.3390/md18030143
  15. Laminarin Pretreatment Provides Neuroprotection against Forebrain Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Neuroinflammation in Aged Gerbils vol.18, pp.4, 2017, https://doi.org/10.3390/md18040213
  16. Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication—Potential Implication of Sirtuins vol.18, pp.5, 2017, https://doi.org/10.3390/md18050242
  17. The effect of fucoidan or potassium permanganate on growth performance, intestinal pathology, and antioxidant status in Nile tilapia (Oreochromis niloticus) vol.46, pp.6, 2017, https://doi.org/10.1007/s10695-020-00858-w
  18. A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms vol.27, pp.3, 2017, https://doi.org/10.1111/anu.13233
  19. Fucoidan ameliorates acute and sub-chronic in vivo toxicity of the fungicide cholorothalonil in Oreochromis niloticus (Nile tilapia) vol.245, pp.None, 2021, https://doi.org/10.1016/j.cbpc.2021.109035
  20. Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review vol.19, pp.12, 2021, https://doi.org/10.3390/md19120678
  21. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases vol.14, pp.1, 2017, https://doi.org/10.3390/pharmaceutics14010001