DOI QR코드

DOI QR Code

V-SUPER VERTEX OUT-MAGIC TOTAL LABELINGS OF DIGRAPHS

  • Received : 2015.10.20
  • Published : 2017.04.30

Abstract

Let D be a directed graph with p vertices and q arcs. A vertex out-magic total labeling is a bijection f from $V(D){\cup}A(D){\rightarrow}\{1,2,{\ldots},p+q\}$ with the property that for every $v{\in}V(D)$, $f(v)+\sum_{u{\in}O(v)}f((v,u))=k$, for some constant k. Such a labeling is called a V-super vertex out-magic total labeling (V-SVOMT labeling) if $f(V(D))=\{1,2,3,{\ldots},p\}$. A digraph D is called a V-super vertex out-magic total digraph (V-SVOMT digraph) if D admits a V-SVOMT labeling. In this paper, we provide a method to find the most vital nodes in a network by introducing the above labeling and we study the basic properties of such labelings for digraphs. In particular, we completely solve the problem of finding V-SVOMT labeling of generalized de Bruijn digraphs which are used in the interconnection network topologies.

Keywords

References

  1. J. C. Bermond and C. Peyrat, De Bruijn and Kautz networks: a competitor for the hypercube?, in: F. Andre T, J. P. Verjus (Eds), Hypercube and Distributed Computers, pp. 279-293, North-Holland, Amsterdam, 1989.
  2. G. S. Bloom and D. F. Hsu, On graceful directed graphs and a problem in a network addrressing, Congr. Numer. 35 (1982), 91-103.
  3. G. S. Bloom and D. F. Hsu, On graceful directed graphs, SIAM J. Algebraic Discrete Methods 6 (1985), no. 3, 519-536. https://doi.org/10.1137/0606051
  4. G. S. Bloom and D. F. Hsu, On graceful directed graphs that are computational models of some algebraic system, Graph theory with applications to algorithms and computer science, (Kalamazoo, Mich., 1984), 89-102, wiley Intersci. Publ., Wiley, New York, 1985.
  5. G. S. Bloom, A. Marr, and W. D. Wallis, Magic digraphs, J. Combin. Math. Combin. Comput. 65 (2008), 205-212.
  6. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, North Holland, New York, 1986.
  7. H. Chang, Finding the n Most Vital Nodes in a Flow Network, Masters Thesis, University of Texas at Arlington, August 1972.
  8. H. Enomoto, A. S. Llado, T. Nagamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 2 (1998), no. 2, 105-109.
  9. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2014), #DS6.
  10. M. Imase and M. Itoh, Design to minimize diameter on building-block networks, IEEE Trans. Comput. 30 (1981), no. 6, 439-442.
  11. M. Imase and M. Itoh, A design for directed graphs with minimum diameter, IEEE Trans. Comput. C-32 (1983), 782-784. https://doi.org/10.1109/TC.1983.1676323
  12. J. A. MacDougall, M. Miller, Slamin, and W. D. Wallis, Vertex magic total labelings of graphs, Util. Math. 61 (2002), 3-21.
  13. J. A. MacDougall, M. Miller, and K. A. Sugeng, Super vertex magic total labelings of graphs, in: Proc. of the 15th Australian workshop on combinatorial algorithms, 222-229, 2004.
  14. G. Marimuthu and M. Balakrishnan, E-super vertex magic labelings of graphs, Discrete Appl. Math. 160 (2012), no. 12, 1766-1774. https://doi.org/10.1016/j.dam.2012.03.016
  15. J. Sedlacek, Problem 27, In Theory of Graphs and its Applications, Proc. Symposium (1963), 163-167.
  16. V. Swaminathan and P. Jeyanthi, Super vertex magic labeling, Indian J. Pure Appl. Math. 34 (2003), no. 6, 935-939.
  17. T.-M. Wang and G.-H. Zhang, Note on E-super vertex magic graphs, Discrete Appl. Math. 178 (2014), 160-162. https://doi.org/10.1016/j.dam.2014.06.009