DOI QR코드

DOI QR Code

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin (Department of Materials Science Engineering, Dankook University) ;
  • Yoon, Da-ye (Department of Energy Engineering, Dankook University) ;
  • Kim, Woo-byoung (Department of Energy Engineering, Dankook University) ;
  • Lee, Jae-won (Department of Energy Engineering, Dankook University)
  • Received : 2017.03.29
  • Accepted : 2017.04.18
  • Published : 2017.04.28

Abstract

Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Keywords

References

  1. M. E. Spahr, P. Novak, B. Schnyder, O. Haas and R. Nesper: J. Electrochem. Soc., 145 (1998) 1113. https://doi.org/10.1149/1.1838425
  2. S. Gopukumar, K. Y. Chung and K. B. Kim: Electrochim. Acta, 49 (2004) 803. https://doi.org/10.1016/j.electacta.2003.09.034
  3. G. M. Koenig, I. Belharouak, H. Deng, Y. K. Sun and K. Amine: Chem. Mater., 23 (2011) 1954. https://doi.org/10.1021/cm200058c
  4. J. Cho, T. G. Kim, C. Kim, J. G. Lee, Y. W. Kim and B. Park: J. Power Sources, 146 (2005) 58. https://doi.org/10.1016/j.jpowsour.2005.03.118
  5. S. T. Myung, K. Izumi, S. Komaba, Y. K. Sun, H. Yashiro and N. Kumagai: Chem. Mater., 17 (2005) 3695. https://doi.org/10.1021/cm050566s
  6. Y. Kim, H. S. Kim and S. W. Martin: Electrochim. Acta, 52 (2006) 1316. https://doi.org/10.1016/j.electacta.2006.07.033
  7. Q. Qiu, X. Huang, Y. Chen, Y. Tan and W. Lv: Ceram. Int., 40 (2014) 10511. https://doi.org/10.1016/j.ceramint.2014.03.023
  8. J. Cho, T. J. Kim, Y. J. Kim and B. Park: Electochem. Solid-State Lett., 4 (2001) A159. https://doi.org/10.1149/1.1398556
  9. S. M. Lee, S. H. Oh, J. P. Ahn, W. I. Cho and H. Jang: J. Power Sources, 159 (2006) 1334. https://doi.org/10.1016/j.jpowsour.2005.12.035
  10. Y. Huang, J. Chen, J. Ni, H. Zhou and X. Zhang: J. Power Sources, 188 (2009) 538. https://doi.org/10.1016/j.jpowsour.2008.12.037
  11. S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang and R. Santhanam: J. Power Sources, 188 (2009) 564. https://doi.org/10.1016/j.jpowsour.2008.11.113
  12. Z. Zhang, Z. Gong and Y. Yang: J. Phys. Chem., 108 (2004) 17546. https://doi.org/10.1021/jp046980h
  13. T. Liu, S. X. Zhao, K. Wang and C. W. Nan: Electrochim. Acta, 85 (2012) 605. https://doi.org/10.1016/j.electacta.2012.08.101
  14. H. G. Song, J. Y. Kim, K. T. Kim and Y. Park: J. Power Sources, 196 (2011) 6847. https://doi.org/10.1016/j.jpowsour.2010.09.027
  15. Q. Zhang, W. Jiang, Z. Zhou, S. Wang, X. Guo, S. Zhao, and G. Ma: Solid State Ionics, 218 (2012) 31. https://doi.org/10.1016/j.ssi.2012.05.006
  16. H. Huang, S. C. Yin and L. F. Nazar: Electrochem. Solid-State Lett., 4 (2001) A170. https://doi.org/10.1149/1.1396695
  17. D. Li, Y. Sasaki, M. Kageyama, K. Kobayakawa and Y. Sato: J. Power Sources, 148 (2005) 85. https://doi.org/10.1016/j.jpowsour.2005.02.006
  18. K. M. Shaju, G. V. S. Rao and B. V. R. Chowdari: Electrochim. Acta, 48 (2003) 2691. https://doi.org/10.1016/S0013-4686(03)00317-7
  19. Z. Li, F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G. Chen and Y. Wei: J. Phys. Chem. C, 114 (2010) 22751. https://doi.org/10.1021/jp1088788
  20. R. A. Quinlan, Y. C. Lu, S. H. Yang and A. N. Mansour: J. Electrochem. Soc., 160 (2013) A669. https://doi.org/10.1149/2.069304jes
  21. L. Baggetto, N. J. Dudney and G. M. Veith: Electrochim. Acta, 90 (2013) 135. https://doi.org/10.1016/j.electacta.2012.11.120
  22. B. Markovsky, D. Kovacheva, Y. Talyosef, M. Gorova, J. Grinblat and D. Aurbach: Electrochem. Solid-State Lett., 9 (2006) A449. https://doi.org/10.1149/1.2221765