DOI QR코드

DOI QR Code

A Study on the Implementation of Transmission type PPG Measurement Device in a Wrist Watch

손목시계 형태의 투과형 PPG 측정 장치의 구현에 관한 연구

  • Kim, Namsub (Department of Computer Application & Electronics, Seoil University)
  • Received : 2017.03.31
  • Accepted : 2017.04.12
  • Published : 2017.04.30

Abstract

This paper presents an effective PPG measurement device in a wrist watch for smart healthcare. PPG can be acquired by measuring absorption of light and PPG measurement device is classified as transmission and reflection type. Reflection type is easy to implement but vulnerable to motion artifact. Moreover, reflection type must use 2 hands at once if the device is implemeted in a wrist watch. This paper describes the implementation of robust transmission type PPG measurement device by using previous developed reflection type device. PPG sensor is clip type and can be separated from the device so that the influence of motion artifact can be reduced. The proposed device can transmit the measured signal in real-time and is useful for smart healthcare. For evaluation of the proposed device, PPG signals are compared with reflection type in the same condition. The results show that the proposed device has 20% improvement in performance.

본 논문에서는 효율적인 손목시계형 PPG 측정 장치의 구현에 관하여 연구하였다. PPG는 반사형 또는 투과형으로 측정이 가능하며, 일반적으로 손목시계의 형태의 PPG 측정 장치는 반사형으로 구현되기 때문에 동잡음에 취약하다는 단점이 있다. 또한 반사형의 경우 한쪽 손을 고정한 상태에서 다른 손을 사용하여 측정을 해야 하기 때문에 활동성에도 제약이 따른다. 본 논문에서는 기존에 개발된 장치에 클립형의 투과형 센서를 추가하여 손가락에 고정시킴으로써 측정 시 움직임을 최소화하도록 동잡음에 강건하도록 하였고, 한 손으로 측정이 가능할 뿐만 아니라 탈부착이 가능하도록 구현하여 활동성에 영향이 없도록 하였다. 제안된 장치는 측정된 신호를 실시간으로 전송이 가능하기 때문에 스마트 헬스케어 분야에 적합하며 제안된 장치의 성능을 판단하기 위해 기존의 장치와 같은 조건하에서의 측정된 신호를 비교 실험하였다. 실제 심박수 측정이 가능한 파형을 확인한 결과, 제안된 측정 장치는 기존의 장치에 비해 20%의 성능향상이 있음을 확인하였다.

Keywords

References

  1. Namsub Kim, "An Efficient Methodology of Fall Detection for Ubiquitous Healthcare", Journal of KIIT, Vol. 8, No. 8, pp. 133-140, Jul. 2010.
  2. Nitzan, Meir, Ayal Romem, and Robert Koppel. "Pulse oximetry: fundamentals and technology update." Medical Devices, Vol. 7, pp. 231-239, 2014.
  3. Severinghaus, John W. "Takuo Aoyagi: discovery of pulse oximetry." Anesthesia & Analgesia 105.6 (2007), Vol. 105, No. 6, pp. s1-s4, 2007. https://doi.org/10.1213/01.ane.0000269514.31660.09
  4. Gerard De Haan, and Arno Van Leest. "Improved motion robustness of remote-PPG by using the blood volume pulse signature." Physiological measurement, Vol. 35, No. 9, pp. 1913-1926, Aug. 2014. https://doi.org/10.1088/0967-3334/35/9/1913
  5. S. Seyedtabaii, and L. Seyedtabaii. "Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal." World Academy of Science, Engineering and Technology, Vol. 37, pp. 173-176, 2008.
  6. Wijshoff, R. W. C. G. R., Veen, J., Van der Lee, A. M., Mulder, L., Stijnen, J. M. A., Van Tuijl, S., and Aarts, R. M "PPG motion artifact handling using a self-mixing interferometric sensor." SPIE Photonics West 2011, pp. 22-27, Jan. 2011.
  7. Mendelson, Yitzhak. "Pulse oximetry: theory and applications for noninvasive monitoring." Clinical chemistry, Vol. 38, No. 9, pp. 1601-1607, 1992.
  8. Maeda, Yuka, Masaki Sekine, and Toshiyo Tamura. "Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography." Journal of medical systems, Vol. 35, No. 5, pp. 969-976, 2011. https://doi.org/10.1007/s10916-010-9505-0
  9. Vizbara, Vytautas, Daivaras Sokas, and Vaidotas Marozas. "Motion artifacts in photoplethysmographic signals modeling based on optical and topological properties of skin." Biomedical engineering. Vol. 20, No. 1, 2017.
  10. Gonzalez, R., Manzo, A., Delgado, J., Padilla, J. M., Trenor, B., and Saiz, J. "A computer based photoplethysmographic vascular analyzer through derivatives." IEEE Computers in Cardiology, pp. 177-180, Sep. 2008.
  11. Elgendi, Mohamed. "On the analysis of fingertip photoplethysmogram signals." Current cardiology reviews, Vol. 8, No. 1, pp. 14-25, 2012. https://doi.org/10.2174/157340312801215782