DOI QR코드

DOI QR Code

The role of nuclear factor I-C in tooth and bone development

  • Roh, Song Yi (Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Park, Joo-Cheol (Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2017.04.04
  • Accepted : 2017.04.06
  • Published : 2017.04.30

Abstract

Nuclear factor I-C (NFI-C) plays a pivotal role in various cellular processes such as odontoblast and osteoblast differentiation. Nfic-deficient mice showed abnormal tooth and bone formation. The transplantation of Nfic-expressing mouse bone marrow stromal cells rescued the impaired bone formation in $Nfic^{-/-}$ mice. Studies suggest that NFI-C regulate osteogenesis and dentinogenesis in concert with several factors including transforming growth factor-${\beta}1$, $Kr{\ddot{u}}ppel$-like factor 4, and ${\beta}$-catenin. This review will focus on the function of NFI-C during tooth and bone formation and on the relevant pathways that involve NFI-C.

Keywords

References

  1. Neunzehn J, Weber MT, Wittenburg G, Lauer G, Hannig C, Wiesmann HP. Dentin-like tissue formation and biomineralization by multicellular human pulp cell spheres in vitro. Head Face Med 2014;10:25. https://doi.org/10.1186/1746-160X-10-25
  2. Sowmya S, Chennazhi KP, Arzate H, Jayachandran P, Nair SV, Jayakumar R. Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast. Tissue Eng Part C Methods 2015;21:1044-58. https://doi.org/10.1089/ten.tec.2014.0603
  3. Chen X, Chen G, Feng L, Jiang Z, Guo W, Yu M, et al. Expression of Nfic during root formation in first mandibular molar of rat. J Mol Histol 2014;45:619-26. https://doi.org/10.1007/s10735-014-9588-x
  4. Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, et al. Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol 2003;23:1075-84. https://doi.org/10.1128/MCB.23.3.1075-1084.2003
  5. Park JC, Herr Y, Kim HJ, Gronostajski RM, Cho MI. Nfic gene disruption inhibits differentiation of odontoblasts responsible for root formation and results in formation of short and abnormal roots in mice. J Periodontol 2007;78:1795-802. https://doi.org/10.1902/jop.2007.060363
  6. Nagata K, Guggenheimer RA, Hurwitz J. Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci U S A 1983;80:4266-70. https://doi.org/10.1073/pnas.80.14.4266
  7. Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J. Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci U S A 1982;79:6438-42. https://doi.org/10.1073/pnas.79.21.6438
  8. Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene 2000;249:31-45. https://doi.org/10.1016/S0378-1119(00)00140-2
  9. Gronostajski RM, Adhya S, Nagata K, Guggenheimer RA, Hurwitz J. Site-specific DNA binding of nuclear factor I: analyses of cellular binding sites. Mol Cell Biol 1985;5:964-71. https://doi.org/10.1128/MCB.5.5.964
  10. Meisterernst M, Gander I, Rogge L, Winnacker EL. A quantitative analysis of nuclear factor I/DNA interactions. Nucleic Acids Res 1988;16:4419-35. https://doi.org/10.1093/nar/16.10.4419
  11. Leegwater PA, van der Vliet PC, Rupp RA, Nowock J, Sippel AE. Functional homology between the sequence-specific DNA-binding proteins nuclear factor I from HeLa cells and the TGGCA protein from chicken liver. EMBO J 1986;5:381-6.
  12. Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 1987;48:79-89. https://doi.org/10.1016/0092-8674(87)90358-8
  13. Chaudhry AZ, Lyons GE, Gronostajski RM. Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn 1997;208:313-25. https://doi.org/10.1002/(SICI)1097-0177(199703)208:3<313::AID-AJA3>3.0.CO;2-L
  14. Campbell CE, Piper M, Plachez C, Yeh YT, Baizer JS, Osinski JM, et al. The transcription factor Nfix is essential for normal brain development. BMC Dev Biol 2008;8:52. https://doi.org/10.1186/1471-213X-8-52
  15. Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 2005;25:685-98. https://doi.org/10.1128/MCB.25.2.685-698.2005
  16. Shu T, Butz KG, Plachez C, Gronostajski RM, Richards LJ. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J Neurosci 2003;23:203-12. https://doi.org/10.1523/JNEUROSCI.23-01-00203.2003
  17. Grunder A, Ebel TT, Mallo M, Schwarzkopf G, Shimizu T, Sippel AE, et al. Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech Dev 2002;112:69-77. https://doi.org/10.1016/S0925-4773(01)00640-2
  18. Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Grunder A, et al. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 2007;27:3855-67. https://doi.org/10.1128/MCB.02293-06
  19. Arana-Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 2004;36:1367-73. https://doi.org/10.1016/j.biocel.2004.01.006
  20. Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol 1970;24:173-86.
  21. Thomas HF, Kollar EJ. Differentiation of odontoblasts in grafted recombinants of murine epithelial root sheath and dental mesenchyme. Arch Oral Biol 1989;34:27-35. https://doi.org/10.1016/0003-9969(89)90043-5
  22. Lee TY, Lee DS, Kim HM, Ko JS, Gronostajski RM, Cho MI, et al. Disruption of Nfic causes dissociation of odontoblasts by interfering with the formation of intercellular junctions and aberrant odontoblast differentiation. J Histochem Cytochem 2009;57:469-76. https://doi.org/10.1369/jhc.2009.952622
  23. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  24. Itoh M, Nagafuchi A, Moroi S, Tsukita S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 1997;138:181-92. https://doi.org/10.1083/jcb.138.1.181
  25. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986;103:755-66. https://doi.org/10.1083/jcb.103.3.755
  26. Kjenseth A, Fykerud TA, Sirnes S, Bruun J, Yohannes Z, Kolberg M, et al. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation. J Biol Chem 2012;287:15851-61. https://doi.org/10.1074/jbc.M111.281832
  27. Eckardt D, Theis M, Degen J, Ott T, van Rijen HV, Kirchhoff S, et al. Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J Mol Cell Cardiol 2004;36:101-10. https://doi.org/10.1016/j.yjmcc.2003.10.006
  28. Martin TA, Mansel RE, Jiang WG. Loss of occludin leads to the progression of human breast cancer. Int J Mol Med 2010;26:723-34.
  29. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993;123:1777-88. https://doi.org/10.1083/jcb.123.6.1777
  30. Joao SM, Arana-Chavez VE. Tight junctions in differentiating ameloblasts and odontoblasts differentially express ZO-1, occludin, and claudin-1 in early odontogenesis of rat molars. Anat Rec A Discov Mol Cell Evol Biol 2004;277:338-43.
  31. Smith AJ, Tobias RS, Plant CG, Browne RM, Lesot H, Ruch JV. In vivo morphogenetic activity of dentine matrix proteins. J Biol Buccale 1990;18:123-9.
  32. Herpin A, Lelong C, Favrel P. Transforming growth factor-betarelated proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 2004;28:461-85. https://doi.org/10.1016/j.dci.2003.09.007
  33. Burt DW. Evolutionary grouping of the transforming growth factorbeta superfamily. Biochem Biophys Res Commun 1992;184:590-5. https://doi.org/10.1016/0006-291X(92)90630-4
  34. Horbelt D, Denkis A, Knaus P. A portrait of transforming growth factor $\beta$ superfamily signalling: background matters. Int J Biochem Cell Biol 2012;44:469-74. https://doi.org/10.1016/j.biocel.2011.12.013
  35. Liu F. Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev 2006;17:9-17. https://doi.org/10.1016/j.cytogfr.2005.09.010
  36. Siegenthaler JA, Miller MW. Transforming growth factor beta 1 promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21 in the developing cerebral cortex. J Neurosci 2005;25:8627-36. https://doi.org/10.1523/JNEUROSCI.1876-05.2005
  37. Ouellet S, Vigneault F, Lessard M, Leclerc S, Drouin R, Guerin SL. Transcriptional regulation of the cyclin-dependent kinase inhibitor 1A (p21) gene by NFI in proliferating human cells. Nucleic Acids Res 2006;34:6472-87. https://doi.org/10.1093/nar/gkl861
  38. Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 2007;19:176-84. https://doi.org/10.1016/j.ceb.2007.02.015
  39. Zhang Y, Wang HR, Wrana JL. Smurf1: a link between cell polarity and ubiquitination. Cell Cycle 2004;3:391-2. https://doi.org/10.4161/cc.3.4.772
  40. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001;276:12477-80. https://doi.org/10.1074/jbc.C100008200
  41. Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, et al. Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J Biol Chem 2009;284:17293-303. https://doi.org/10.1074/jbc.M109.009084
  42. Lee DS, Yoon WJ, Cho ES, Kim HJ, Gronostajski RM, Cho MI, et al. Crosstalk between nuclear factor I-C and transforming growth factor-$\beta$1 signaling regulates odontoblast differentiation and homeostasis. PLoS One 2011;6:e29160. https://doi.org/10.1371/journal.pone.0029160
  43. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007;19:142-9. https://doi.org/10.1016/j.ceb.2007.02.001
  44. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807-69. https://doi.org/10.1152/physrev.2001.81.2.807
  45. Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 2000;25:257-60. https://doi.org/10.1016/S0968-0004(00)01595-4
  46. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGFbeta signaling pathways. PLoS One 2008;3:e3642. https://doi.org/10.1371/journal.pone.0003642
  47. Prasad AS. Zinc: an overview. Nutrition 1995;11(1 Suppl):93-9.
  48. Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, et al. Zinc-induced neuronal death in cortical neurons. Cell Mol Biol (Noisy-le-grand) 2000;46:797-806.
  49. Chai F, Truong-Tran AQ, Ho LH, Zalewski PD. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: a review. Immunol Cell Biol 1999;77:272-8. https://doi.org/10.1046/j.1440-1711.1999.00825.x
  50. Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH. Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 2002;277:20438-45. https://doi.org/10.1074/jbc.M110631200
  51. Vallee BL, Auld DS. Zinc metallochemistry in biochemistry. EXS 1995;73:259-77.
  52. Westin G, Schaffner W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 1988;7:3763-70.
  53. LaRochelle O, Labbe S, Harrisson JF, Simard C, Tremblay V, St-Gelais G, et al. Nuclear factor-1 and metal transcription factor-1 synergistically activate the mouse metallothionein-1 gene in response to metal ions. J Biol Chem 2008;283:8190-201. https://doi.org/10.1074/jbc.M800640200
  54. Oh HJ, Lee HK, Park SJ, Cho YS, Bae HS, Cho MI, et al. Zinc balance is critical for NFI-C mediated regulation of odontoblast differentiation. J Cell Biochem 2012;113:877-87. https://doi.org/10.1002/jcb.23421
  55. Black AR, Black JD, Azizkhan-Clifford J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001;188:143-60. https://doi.org/10.1002/jcp.1111
  56. Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 1996;271:20009-17. https://doi.org/10.1074/jbc.271.33.20009
  57. Evans PM, Liu C. Roles of Krupel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai) 2008;40:554-64. https://doi.org/10.1111/j.1745-7270.2008.00439.x
  58. Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, Showe LC, Katsaros D, et al. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 2009;11:1297-304. https://doi.org/10.1038/ncb1974
  59. Lin H, Liu H, Sun Q, Yuan G, Zhang L, Chen Z. KLF4 promoted odontoblastic differentiation of mouse dental papilla cells via regulation of DMP1. J Cell Physiol 2013;228:2076-85. https://doi.org/10.1002/jcp.24377
  60. Lin H, Xu L, Liu H, Sun Q, Chen Z, Yuan G, et al. KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J Endod 2011;37:948-54. https://doi.org/10.1016/j.joen.2011.03.030
  61. Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A. Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 2006;281:19064-71. https://doi.org/10.1074/jbc.M600714200
  62. Lee HK, Lee DS, Park SJ, Cho KH, Bae HS, Park JC. Nuclear factor I-C (NFIC) regulates dentin sialophosphoprotein (DSPP) and E-cadherin via control of Kruppel-like factor 4 (KLF4) during dentinogenesis. J Biol Chem 2014;289:28225-36. https://doi.org/10.1074/jbc.M114.568691
  63. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem 2012;151:247-54. https://doi.org/10.1093/jb/mvs004
  64. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 2008;283:29119-25. https://doi.org/10.1074/jbc.M801774200
  65. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 2003;309:689-94. https://doi.org/10.1016/j.bbrc.2003.08.058
  66. Lee DS, Choung HW, Kim HJ, Gronostajski RM, Yang YI, Ryoo HM, et al. NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells 2014;32:2467-79. https://doi.org/10.1002/stem.1733
  67. Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/$\beta$-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res 2012;27:2344-58. https://doi.org/10.1002/jbmr.1694
  68. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 2000;14:1293-307.
  69. Chung SS, Lee JS, Kim M, Ahn BY, Jung HS, Lee HM, et al. Regulation of Wnt/$\beta$-catenin signaling by CCAAT/enhancer binding protein $\beta$ during adipogenesis. Obesity (Silver Spring) 2012;20:482-7. https://doi.org/10.1038/oby.2011.212
  70. Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem 2007;282:14515-24. https://doi.org/10.1074/jbc.M700030200
  71. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab 2009;20:16-24. https://doi.org/10.1016/j.tem.2008.09.002
  72. Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 2007;19:612-7. https://doi.org/10.1016/j.ceb.2007.09.014
  73. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS. Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci U S A 1995;92:8813-7. https://doi.org/10.1073/pnas.92.19.8813
  74. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996;59:3-10. https://doi.org/10.1016/0925-4773(96)00597-7
  75. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996;382:638-42. https://doi.org/10.1038/382638a0
  76. Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, et al. $\beta$-catenin is required in odontoblasts for tooth root formation. J Dent Res 2013;92:215-21. https://doi.org/10.1177/0022034512470137
  77. Zhou J, Wang S, Qi Q, Yang X, Zhu E, Yuan H, et al. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. FASEB J 2017. doi:10.1096/fj.201600975RR. [Epub ahead of print]
  78. Santoro C, Mermod N, Andrews PC, Tjian R. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature 1988;334:218-24. https://doi.org/10.1038/334218a0

Cited by

  1. Age-related epigenome-wide DNA methylation and hydroxymethylation in longitudinal mouse blood vol.13, pp.7, 2017, https://doi.org/10.1080/15592294.2018.1507198
  2. Fisiopatología de los odontoblastos: una revisión vol.16, pp.3, 2017, https://doi.org/10.21676/2389783x.2971
  3. Prioritization of Osteoporosis‐Associated Genome‐wide Association Study ( GWAS) Single‐Nucleotide Polymorphisms ( SNPS) Using Epigenomics and Transcr vol.5, pp.5, 2017, https://doi.org/10.1002/jbm4.10481