References
- Al-Amoudi, O.S.B., Al-Kutti, W.A., Ahmad, S., Maslehuddin, M. (2009). Correlation between compressive strength and certain durability indices of plain and blended cement concretes, Cement and Concrete Composites, 31(9), 672-676. https://doi.org/10.1016/j.cemconcomp.2009.05.005
- ASTM C 1202. (2010). Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, Annual Book of ASTM Standards, 4(2).
- Berke, N.S., Hicks, M.C. (1992). The Life Cycle of Reinforced Concrete Decks and Marine Piles Using Laboratory Diffusion and Corrosion Data, Corrosion Forms and Control of Infrastructure, 207-231.
- Broomfield, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
- Cho, H.J., Kang, J.W., Ahn, Y.H., Kim, S.K., Wang, X.Y. (2016). A New Microstructure Development Model for the Evaluation of Concrete Setting Time, Advances in Materials Science and Engineering, 2016, 1-10.
- Erdem, T.K., Kirca, O. (2008). Use of binary and ternary blends in high strength concrete, Construction and Building Materials, 22(7), 1477-1483. https://doi.org/10.1016/j.conbuildmat.2007.03.026
- Escalante, J.I., Gomez, L.Y., Johal, K.K., Mendoza, G., Mancha, H., Mendez, J. (2001). Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research, 31(10), 1403-1409. https://doi.org/10.1016/S0008-8846(01)00587-7
- Ishida, T., Maekawa, K., Kishi, T. (2007). Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history, Cement and Concrete Research, 37, 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
- Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015). Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes, Journal of the Korea Concrete Institute, 27(2), 115-125 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.2.115
- Kim, T.S., Jung, S.H., Chae, S.T., Lee, B.C., Woo. Y.J., Song, H.W. (2008). An experimental study on the microstructure characteristics of cementitious composites by MIP, Journal of the Korea Concrete Institute, 20(1), 533-536 [in Korean].
- Korean Standards, Testing Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, KS F 2711, 2012, 1-12 [in Korean].
- Lee, S.H., Kwon, S.J. (2012). Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, Journal of the Korea Concrete Institute, 24(6), 715-726 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.6.715
- Maekawa, K., Ishida, T., Kishi, T. (2003). Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
- Malvar, L.J., Lenke, L.R. (2006). Efficiency of fly ash in mitigating alkali silica reaction based on chemical composition, ACI Materials Journals, 103(5), 319-326.
- Metha, P.K., Monteiro, P.J.M. (1993). Concrete: Structure, Properties, and Materials, Prentice Hall, New Jersey.
- Park, S.S., Kwon, S.J., Kim, T.S. (2009). An experimental study on the durability characterization using porosity, Journal of Korea Society of Civil Engineering, 29(2A), 171-179 [in Korean].
- Polder, R.B., Van Der Wegen, G., Boutz, M. (2007). Performance Based Guideline for Service Life Design of Concrete for Civil Engineering Structures - A Proposal Discussed in the Netherlands, International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, 19-21.
- Song, H.W., Jang, J.C., Saraswathy, V., Byun, K.J. (2007). An estimation of the diffusivity of silica fume concrete, Building and Environment, 42(3), 1358-1367. https://doi.org/10.1016/j.buildenv.2005.11.019
- Song, H.W., Kwon, S.J. (2007). Permeability characteristics of carbonated concrete considering capillary pore structure, Cement and Concrete Research, 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
- Song, H.W., Kwon, S.J. (2009). Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure, Cement and Concrete Research, 39(9), 814-824. https://doi.org/10.1016/j.cemconres.2009.05.013
- Song, H.W., Pack, S.W., Lee, C.H., Kwon, S.J. (2006). Service life prediction of concrete sturctures under marine environment considering coupled deterioration, Journal of Restoration of Building and Monument, 12(4), 265-284.
- Tang, L. (1996). Electrically accelerated methods for determining chloride diffusivity in concrete-current development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173
- Thomas, M.D.A., Bamforth, P.B. (1999). Modeling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
- Yuan, Q., Shi, C., De Schutter, G., Audenaert, K., Deng, D. (2009). Chloride binding of cement-based materials subjected to external chloride environment-A Review, Construction Building Materials, 23, 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004