DOI QR코드

DOI QR Code

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions

재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석

  • 이학수 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2017.01.09
  • Accepted : 2017.03.21
  • Published : 2017.03.30

Abstract

Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.

초기재령에서의 콘크리트 거동은 시간의 증가에 따른 수화반응에 따라 변화하는데, 염해 저항성과 강도 특성은 다르게 변화한다. 본 연구에서는 재령이 28일에서 6개월로 증가하면서 변화하는 강도 및 염해 저항특성을 보통 콘크리트에 대하여 분석하였다. 이를 위해 3개의 물-시멘트비를 가진 일반 콘크리트에 대하여, 재령 28일과 6개월 수중양생을 수행하였으며, 강도, 염화물 확산계수, 통과전하량을 평가하였다. 재령이 28일에서 6개월로 증가하면서 강도변화는 135.3~138.3% 수준으로 증가하였으나, 염화물 확산계수의 경우 41.8%~51.1% 수준으로, 통과전하량의 경우 53.6%~70.0% 수준으로 감소하였다. 염화물 확산계수와 통과전하량의 경우는 비교적 비슷한 수준으로 감소하였는데, 두 결과는 전기장 내에서의 염화물 이동에 지배적이기 때문이다. 또한 강도의 변화비보다 염화물 확산계수 및 통과전하량의 변화비가 크게 증가하였는데, 이는 공극특성의 제곱에 비례하여 물질이동 특성이 변하기 때문이다.

Keywords

References

  1. Al-Amoudi, O.S.B., Al-Kutti, W.A., Ahmad, S., Maslehuddin, M. (2009). Correlation between compressive strength and certain durability indices of plain and blended cement concretes, Cement and Concrete Composites, 31(9), 672-676. https://doi.org/10.1016/j.cemconcomp.2009.05.005
  2. ASTM C 1202. (2010). Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, Annual Book of ASTM Standards, 4(2).
  3. Berke, N.S., Hicks, M.C. (1992). The Life Cycle of Reinforced Concrete Decks and Marine Piles Using Laboratory Diffusion and Corrosion Data, Corrosion Forms and Control of Infrastructure, 207-231.
  4. Broomfield, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  5. Cho, H.J., Kang, J.W., Ahn, Y.H., Kim, S.K., Wang, X.Y. (2016). A New Microstructure Development Model for the Evaluation of Concrete Setting Time, Advances in Materials Science and Engineering, 2016, 1-10.
  6. Erdem, T.K., Kirca, O. (2008). Use of binary and ternary blends in high strength concrete, Construction and Building Materials, 22(7), 1477-1483. https://doi.org/10.1016/j.conbuildmat.2007.03.026
  7. Escalante, J.I., Gomez, L.Y., Johal, K.K., Mendoza, G., Mancha, H., Mendez, J. (2001). Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research, 31(10), 1403-1409. https://doi.org/10.1016/S0008-8846(01)00587-7
  8. Ishida, T., Maekawa, K., Kishi, T. (2007). Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history, Cement and Concrete Research, 37, 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
  9. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015). Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes, Journal of the Korea Concrete Institute, 27(2), 115-125 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.2.115
  10. Kim, T.S., Jung, S.H., Chae, S.T., Lee, B.C., Woo. Y.J., Song, H.W. (2008). An experimental study on the microstructure characteristics of cementitious composites by MIP, Journal of the Korea Concrete Institute, 20(1), 533-536 [in Korean].
  11. Korean Standards, Testing Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, KS F 2711, 2012, 1-12 [in Korean].
  12. Lee, S.H., Kwon, S.J. (2012). Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, Journal of the Korea Concrete Institute, 24(6), 715-726 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.6.715
  13. Maekawa, K., Ishida, T., Kishi, T. (2003). Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  14. Malvar, L.J., Lenke, L.R. (2006). Efficiency of fly ash in mitigating alkali silica reaction based on chemical composition, ACI Materials Journals, 103(5), 319-326.
  15. Metha, P.K., Monteiro, P.J.M. (1993). Concrete: Structure, Properties, and Materials, Prentice Hall, New Jersey.
  16. Park, S.S., Kwon, S.J., Kim, T.S. (2009). An experimental study on the durability characterization using porosity, Journal of Korea Society of Civil Engineering, 29(2A), 171-179 [in Korean].
  17. Polder, R.B., Van Der Wegen, G., Boutz, M. (2007). Performance Based Guideline for Service Life Design of Concrete for Civil Engineering Structures - A Proposal Discussed in the Netherlands, International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, 19-21.
  18. Song, H.W., Jang, J.C., Saraswathy, V., Byun, K.J. (2007). An estimation of the diffusivity of silica fume concrete, Building and Environment, 42(3), 1358-1367. https://doi.org/10.1016/j.buildenv.2005.11.019
  19. Song, H.W., Kwon, S.J. (2007). Permeability characteristics of carbonated concrete considering capillary pore structure, Cement and Concrete Research, 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
  20. Song, H.W., Kwon, S.J. (2009). Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure, Cement and Concrete Research, 39(9), 814-824. https://doi.org/10.1016/j.cemconres.2009.05.013
  21. Song, H.W., Pack, S.W., Lee, C.H., Kwon, S.J. (2006). Service life prediction of concrete sturctures under marine environment considering coupled deterioration, Journal of Restoration of Building and Monument, 12(4), 265-284.
  22. Tang, L. (1996). Electrically accelerated methods for determining chloride diffusivity in concrete-current development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  23. Thomas, M.D.A., Bamforth, P.B. (1999). Modeling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  24. Yuan, Q., Shi, C., De Schutter, G., Audenaert, K., Deng, D. (2009). Chloride binding of cement-based materials subjected to external chloride environment-A Review, Construction Building Materials, 23, 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004