DOI QR코드

DOI QR Code

The Secretion Optimization of Oligopeptide with His-Pro Repeats in Bacillus subtilis and Its Anti-Diabetic Effects

고초균에서 His-Pro 반복서열을 갖는 Oligopeptide의 분비 최적화 및 항당뇨 효과

  • 정선화 (대구대학교 생명환경대학 바이오산업학과) ;
  • 최장원 (대구대학교 생명환경대학 바이오산업학과)
  • Received : 2017.03.13
  • Accepted : 2017.03.27
  • Published : 2017.03.31

Abstract

To verify anti-diabetic effect of oligopeptide with His-Pro repeats (mHP peptide), the oligopeptide was first secreted and optimized using the secretion vector, pRBAS with alkaline protease gene promoter and the signal sequence in Bacillus subtilis and directly the anti-diabetic effect of the mHP peptide was investigated in insulinoma cell, RINm5F cell line. The oligopeptide gene was obtained by annealing oligonucleotides with repeated His-Pro sequence and finally was constructed as 18 dipeptides (108 bp and 4.0 kDa) coding gene, named oligopeptide with His-Pro repeats (mHP peptide) to make cyclo(His-Pro) known to be anti-diabetic effects. The region encoding the oligopeptide gene was subcloned into the pRBAS secretion vector (E.coli-Bacillus shuttle vector) after PCR amplification using the designed primers including initiation and termination codons and His tag, named pRBAS-mHP (6.56 kb). To optimize secretion of the oligopeptide, various culture conditions were investigated in Bacillus subtilis LKS. As a result, the secreted oligopeptide was maximally measured (approximately $59.6{\mu}g/mL$) in 3 L batch culture and the highest secretion was achieved at $30^{\circ}C$, PY medium, and carbon sources (particularly barley and glycerol). In the RINm5F cells treated with 2 mM STZ, the oligopeptide treatment (0.1 mg/mL) restored the cell viability (10%) and reduced the nitric oxide (NO) generation (35%) and DNA fragmentation (90%). And also, insulin secretion level was increased to 17% higher than in STZ-treated RINm5F cells. These results suggest that the oligopeptide with His-Pro repeats could be a candidate material for anti-diabetic agent against STZ-induced diabetes.

Keywords

References

  1. Yoon, J. H., S. T. Lee, and Y. H. Park (1996) Inter- and intraspecific phylogenetic analysis of genus nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194.
  2. Hilton, C. W., C. Prasad, P. Vo, and C. Mouton (1992) Food contains the bioactive peptide, cyclo (His-Pro). J. Clin. Endocr. Metab. 75: 375-378.
  3. Kandarakis, F., T. Iriuchijima, C. Prasad, and J. F. Wilber (1985) Distribution and characterization of cyclo (His-Pro)-like immunoreactivity in the human gastrointestinal tract. Neuropeptides 6: 21-25. https://doi.org/10.1016/0143-4179(85)90127-1
  4. Song, M. K., M. J. Rosenthal, S. Hong, M. Harris, I. Hwang, I. Yip, M. S. Golub, M. E. Ament, and V. L. Go (2001) Synergistic antidiabetic activities of zinc, cyclo (his-pro), and arachidonic acid. Metabolism 50: 53-59. https://doi.org/10.1053/meta.2001.19427
  5. Thompson, J. D., D. G. Higgins, T. H. Gibson, and W. Clusta (1994) Improving the sensitivity of progressive multiple sequence alignment though sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  6. Adler-Nissen, J. (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food. Chem. 27: 1256-1262. https://doi.org/10.1021/jf60226a042
  7. Prasad, C., C. W. Hilton, F. Svec, E. S. Onaivi, and P. Vo (1991) Could dietary proteins serve as cyclo(His-Pro) precursors? Neuropeptides 19: 17-21. https://doi.org/10.1016/0143-4179(91)90069-U
  8. Choi, J. W and K. S. Ra (2011) Enhancement of Cyclo-His-Pro (CHP) content from soybean fermented with Bacillus amyloliquefaciens CHP-12 and its Anti-diabetic Effect. Kor. J. Biotechnol. Bioeng. 26: 41-48.
  9. Park, K. I (2007) Secretion of the Periserrula leucophryna ferritin in Bacillus subtilis and Its optimization. Master thesis, Graduate School Daegu University.
  10. Schallmey, M., A. Singh, and O. P. Ward (2004) Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  11. Westers, L., H. Westers, and W. J. Quax (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta. 1694: 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011
  12. Nijland, R. and O. P. Kuipers (2008) Optimization of protein secretion by Bacillus subtilis. Recent Pat. Biotechnol. 2: 79-87. https://doi.org/10.2174/187220808784619694
  13. Choi. J. W. (2016) Secretion of ferritin protein of Periserrula leucophryna in Bacillus subtilis and its feed efficiency. Kor. J. Biotechnol. Bioeng. 31: 105-112.
  14. Gazdar, A. F., W. L. Chick, H. K. Oie, H. L. Sims, D. L. King, G. C. Weir, and V. Lauris (1980) Continuous, clonal, insulin- and somatostatin- secreting cell lines established from a transplantable rat islet cell tumor. Proc. Natl. Acad. Sci. USA 77: 3519-3523. https://doi.org/10.1073/pnas.77.6.3519
  15. Kim, S. I., J. W. Choi, and S. Y. Lee (1997) Effects of pleiotrophic mutations, degUh and spoOA, on the production of foreign proteins using the heterologous secretion system of Bacillus subtilis. Mol. Cells. 7: 158-164.
  16. Sambrook, J., E.F. Fritsch, and T. Maniatis (1989) In Molecular cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press.
  17. Lee, M. H., J. J. Song, Y. H. Choi, S. P. Hong, E. H. Rha, K. Kim, S. G. Lee, S. C. Lee, H. Poo, Y. B. Seu, and M. H. Sung (2003) High-Level Expression and Secretion of Bacillus pumilus lipase B26 in Bacillus subtilis chungkookjang. J. Microbiol. Biotechnol. 13: 892-896.
  18. Tallent, S. M., K. M. Kristin, S. A. Errol, and B. W. Reginald (2012) Efficient isolation and identification of Bacillus cereus group. J. AOAC Int. 95: 446-451. https://doi.org/10.5740/jaoacint.11-251
  19. Sadaie, Y. and T. Kada (1983) Formation of competent Bacillus subtilis cells. J. Bacteriol. 153: 813-821.
  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  21. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  22. Jung, G. D., J. Y. Yang, E. S. Song, and J. W. Park (2001) Stimulation of melanogenesis by glycyrrhizin in B16 melanoma cells. Exp. Mol. Med. 33: 131-135. https://doi.org/10.1038/emm.2001.23
  23. Xie, Q. W., H. J. Cho, R. A. Mumford, K. M. Seiderek, T. D. Lee, and A. Ding (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225-228. https://doi.org/10.1126/science.1373522
  24. Ignarro, L. J., G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaushury (1987) Endothelium derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84: 9265-9269. https://doi.org/10.1073/pnas.84.24.9265
  25. Mabley, J. G., J. M. Cunningham, N. John, M. A. Di Matteo, and I. C. Green (1997) Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line. J Endocrinol. 155: 567-575. https://doi.org/10.1677/joe.0.1550567
  26. Mohlig, M., S. Wolter, P. Mayer, J. Lang, M. Osterhoff, P. A. Horn, H. Schatz, and A. Pfeiffer (1997) Insulinoma cells contain an isoform of $Ca^{2+}$calmodulin-dependent protein kinase II ${\delta}$ associated with insulin secretion vesicles. Endocrinology 138: 2577-2584. https://doi.org/10.1210/endo.138.6.5168
  27. Shi, X. L., M. Q. Feng, Y. J. Zhao, X. Guo, and P. Zhou (2008) Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis. Biotechnol. Lett. 30: 181-186.
  28. Joo, H. S. and J. W. Choi (2011) Cloning and expression of a alkaline protease from Bacillus clausii I-52. J. Agri. Life Sci. 45: 201-212.
  29. Lenzen, S., M. Tiedge, A. Jorns, and R. Munday (1996) Alloxan derevatives as a tool for the elucidation of the mechanism of the diabetogenic action of alloxan, pp. 113-122. In E. Shafrir (ed.). Lessons from Animal Diavetes. Brirkhauser, Boston.
  30. Lukic, M. L., S. Strostic-Grujicic, and A. Shahin (1998) Effector mechanisms in low-dose streptozotocin-induced diabetes. Devimmunol. 6: 11-128.
  31. Koo, K. B., H. J. Suh, K. S. Ra, and J. W. Choi (2011) Protective effect of cyclo (His-Pro) on streptozotocin-induced cytotoxicity and apoptosis in vitro. J. Microbio. Biotechnol. 21: 218-227. https://doi.org/10.4014/jmb.1012.12003
  32. Turk, J., J. A. Corbett, S. Lamanadham, A. Bohrer, and M. L. Mcdaniel (1993) Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem. Biophys. Res. Commun. 197: 1458-1464. https://doi.org/10.1006/bbrc.1993.2641
  33. Kwon, K. B., J. Y. Yang, D. G. Ryu. H. W. Rho, J. S. Kim, J. W. Park, H. R. Kim, and B. H. Park (2001) Vibrio vulnificus cytolysin induces superoxide anion-initiated apoptotic signaling pathway in human ECV304 cells. J. Biol. Chem. 276: 47518-47523. https://doi.org/10.1074/jbc.M108645200
  34. Gray, A. M. and P. R. Flatt (1999) Insulin-secreting activity of the traditional antidiabetic plant Viscum album (mistletoe). J. Endocrinol. 160: 409-414. https://doi.org/10.1677/joe.0.1600409
  35. Tsutomu, K., Y. Tomohiro, I. Kiyoshi, and Y. Tadashi (1995) Cloning, sequencing, and expression of the dipeptidyl peptidase IV gene from Flavobacterium meningosepticum in Escherichia coli. Archives of biochemistry and biophysics. 320: 123-128. https://doi.org/10.1006/abbi.1995.1349
  36. Ra, K. S., H. J. Suh, and J. W. Choi (2012) Hypoglycemic effects of cyclo(His-Pro) in streptozotocin-induced diabetic rats. Biotechnol. Bioproc. Eng. 17: 176-184. https://doi.org/10.1007/s12257-011-0618-1
  37. Park, S. W., S. A. Choi, J. W. Yun, and J. W. Choi (2012) Alterations in pancreatic protein expression in STZ-induced diabetic rats and genetically diabetic mice in response to treatment with hypoglycemic dipeptide cyclo(His-Pro). Cellular Physiol. Biochem. 29: 603-616. https://doi.org/10.1159/000338514
  38. Choi, S. A., J. W. Yun, H. S. Park, and J. W. Choi (2013) Hypoglycemic dipeptide cyclo (His-Pro) significantly altered plasma proteome in streptozocin-induced diabetic rats and genetically-diabetic (ob/ob) mice. Molecular Biol. Rep. 40: 1753-1765. https://doi.org/10.1007/s11033-012-2229-0

Cited by

  1. Functional Secretion of Granulocyte Colony Stimulating Factor in Bacillus subtilis and Its Thermogenic Activity in Brown Adipocytes vol.24, pp.2, 2019, https://doi.org/10.1007/s12257-019-0127-1