DOI QR코드

DOI QR Code

Changes of Nutritional Components, Polyphenols, and Antioxidant Activities of Domestic Bamboo Tree (Sasa coreana Nakai) Leaves Fermented with Bacillus subtilis

Bacillus subtilis를 이용한 국내산 신이대 잎 발효에 따른 영양성분, 폴리페놀, 항산화능 변화

  • Jo, Han-Gyo (Department of Chemical Engineering, Graduate School of Chosun University) ;
  • Kim, Da-Song (Department of Chemical Engineering, Graduate School of Chosun University) ;
  • Shin, Hyun-Jae (Department of Chemical Engineering, Graduate School of Chosun University)
  • 조한교 (조선대학교 일반대학원 화학공학과) ;
  • 김다송 (조선대학교 일반대학원 화학공학과) ;
  • 신현재 (조선대학교 일반대학원 화학공학과)
  • Received : 2017.03.01
  • Accepted : 2017.03.26
  • Published : 2017.03.31

Abstract

Bamboo leaf has many nutritional and bioactive compounds such as polyphenols, and it can be used for various foods application. Fermentation is one of appropriate processes that can affect the nutrition, taste and flavor, and antioxidant activities of foods. In this study, a representative domestic bamboo tree (Sasa coreana Nakai) leaves were fermented by Bacillus subtilis KCCM 11315 and the changes of carbohydrates, minerals, amino acids, and phenolic compounds and antioxidant activities were investigated before and after fermentation. During the fermentation period, firstly, the leaf was softened and turned to brown. The constituent carbohydrates were slightly increased from $432.09{\pm}5.38mg/g$ to $458.42{\pm}7.39mg/g$, and free sugars decreased by 95% from $28.12{\pm}2.03mg/g$ to $1.4{\pm}0.14mg/g$. Mineral was $20987.5{\pm}345.1{\mu}g/mL$, which was slightly increased after the fermentation compared to $20804.1{\pm}364.6{\mu}g/mL$ before that. The total amino acids were increased to $73881.94{\pm}137.59mg/100g$ compared to $58464.51{\pm}109.12mg/100g$ before fermentation, and free amino acids decreased by more than 85% from $32782.67{\pm}92.49mg/100g$ to $4827.83{\pm}19.76mg/100g$. Total polyphenols content (TPC) increased from $25.51{\pm}1.04GAE^*mg/g$ to $35.34{\pm}0.91GAE^*mg/g$, and the total flavonoid content (TFC) increased to $80.57{\pm}0.22QE^*mg/g$ compared to $69.64{\pm}0.26QE^*mg/g$. The total catechin content (TCC) of TFC was decreased from $69.64{\pm}0.94mg/L$ to $58.23{\pm}0.76mg/L$. The DPPH radical $IC_{50}$ of bamboo leaves decreased to $2624.85{\pm}37.03{\mu}g/mL$ and the ABTS radical $IC_{50}$ of $187.26{\pm}4.78{\mu}g/mL$ was increased after the fermentation. These results could be used as essential nutritional data before developing processed food products using the bamboo leaf.

Keywords

References

  1. Park, J. O. and H. W. Jang (2009) Effects of Sasa coreana, Nakai on the Lipid Compositions of Serum in High Cholesterol Diet Rat. J. Life Sci. 19: 1145-1151. https://doi.org/10.5352/JLS.2009.19.8.1145
  2. Choi, H. S., G. C. Kim, and H. J. Shin (2012) Comparison of Antimicrobial and Antioxidant Activities by Different Extraction Methods in Korean Bamboos. KSBB J. 27: 131-135. https://doi.org/10.7841/ksbbj.2012.27.2.131
  3. Kim, N. K., S. H. Cho, S. D. Lee, J. S. Ryu, and K. H. Shim (2001) Functional Properties and Antimicrobial Activity of Bamboo (Phyllostachys sp.) extracts. Korean J. Postharvest Sci. Technol. 8: 475-480.
  4. Zhang, Y., J. Jiao, C. Liu, X. Wu, and Y. Zhang (2008) Isolation and Purification of Four Flavone C-glycosides from Antioxidant of Bamboo Leaves by Macroporous Resin Column Chromatography and Preparative High-performance Liquid Chromatography. Food Chem. 107: 1326-1336.
  5. Kim, S. H., I. C. Lee, S. S. Kang, C. Moon, S. H. Kim, D. H. Shin, H. C. Kim, J. C. Yoo, and J. C. Kim (2011) Effects of Bamboo Charcoal and Bamboo Leaf Supplementation on Performance and Meat Quality in Chicken. J. Life Sci. 21: 805-810. https://doi.org/10.5352/JLS.2011.21.6.805
  6. Seki, T. and H. Maeda (2010) Cancer Preventive Effect of Kumaizasa Bamboo Leaf Extracts Administered Prior to Carcinogenesis or Cancer Inoculation. Anticancer Research 30:111-118.
  7. Eun, J., H. D. Jeong, and M. S. Jang (2009) Optimization of Ingredient Mixing Ratio for Preparation of Sponge Cake with Bamboo (Pseudosasa japonica Makino) Leaves Powder. Korean J. Food Cookery Sci. 25: 317-329.
  8. Park, S. Y., M. A. Bang, B. J. Oh, J. H. Park, W. S. Song, K. M. Choi, E. S. Choung, H. O. Boo, and S. S. Cho (2013) Fermentation and quality characteristics of Cheonggukjang fermented with Bacillus subtilis BC-P1. Kor. J. Microbiol. 49: 262-269. https://doi.org/10.7845/kjm.2013.3046
  9. Moon, J. Y., S. W. Kwon, S. B. Hong, S. J. Seok, J. S. Kim, and S. J. Kim (2015) Characteristics and functional analysis of Bacillus strains from the fermented soybean products, Cheonggukjang. Kor. J. Microbiol. 51: 300-307. https://doi.org/10.7845/kjm.2015.5044
  10. Kahkonen, M. P., A. I. Hopia, H. J. Vuorela, J. P. Rauha, K. Pihlaja, T. S. Kujala, and M. Heinonen (1999) Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47: 3954-3962. https://doi.org/10.1021/jf990146l
  11. Chang, C. C., M. H. Yang, H. M. Wen, and J. C. Chern (2002) Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 10: 178-182.
  12. Blois, M. S. (1958) Antioxidant Determinations by the Use of a Stable Free Radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  13. Jeong, C. H., G. Choi, J. Kim, J. Kwak, H. Heo, K. H. Shim, B. R. Cho, Y. I. Bae, and J. S. Choi (2009) In vitro Antioxidative Activities and Phenolic Composition of Hot Water Extract from Different Parts of Cudrania tricuspidata. J. Food Sci. Nutr. 14: 283-289.
  14. Seo, S. H., S. E. Park, E. J. Kim, D. Oh, and H. S. Son (2017) Characterization of Fermented Mulberry Leaf Using Bacillus subtilis. J. Korean Soc. Food Sci. Nutr. 46: 108-114. https://doi.org/10.3746/jkfn.2017.46.1.108
  15. Kim, Y. S., C. Jo, G. H. Choi, and K. H. Lee (2011) Changes of Antioxidative Components and Activity of Fermented Tea during Fermentation Period. J. Korean Soc. Food Sci. Nutr. 40: 1073-1078. https://doi.org/10.3746/jkfn.2011.40.8.1073
  16. Yadav, G., A. Singh, P. Bhattacharya, J. Yuvraj, and R. Banerjee (2013) Comparative analysis of solid-state bioprocessing and enzymatic treatment of finger millet for mobilization of bound phenolics. Bioproc. Biosyst. Eng. 36: 1563-1569. https://doi.org/10.1007/s00449-013-0924-4
  17. Cerda, A., M. E. Martinez, C. Soto, P. Poirrier, J. R. Perez-Correa, J. R. Vergara-Salinas, and M. E. Zuniga (2013) The enhancement of antioxidant compounds extracted from Thymus vulgaris using enzymes and the effect of extracting solvent. Food Chem. 139: 138-143. https://doi.org/10.1016/j.foodchem.2012.12.044
  18. Qiu, L., M. Zhao, F. Li, W. Qi, W. Zhang, X. Yue, and J. Cui (2003) Changes in biological activity during artificial fermentation of fluecured tobacco. Tob. Sci. 46: 24-27. https://doi.org/10.3381/0082-4623-46.1.24
  19. Moktan, B., J. Saha, and P. K. Sarkar (2008) Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res. Int. 41: 586-593. https://doi.org/10.1016/j.foodres.2008.04.003
  20. Jo, H. G., M. H. Choi, and H. J. Shin (2015) Preparation of fermentation broth of Sparassis latifolia containing soluble ${\beta}$-glucan using four Lactobacillus species. J. Mushrooms 13: 50-55. https://doi.org/10.14480/JM.2015.13.1.50
  21. Song, H. N. (2013) Quality properties of fermented mugworts and the rapid pattern analysis of their volatile flavor components via surface acoustic wave (SAW) based electronic nose sensor in the GC system. Korean J. Food Preserv. 20: 554-563. https://doi.org/10.11002/kjfp.2013.20.4.554
  22. Reis, B. A. D., A. Kosinska-Cagnazzo, R. Schmitt, and W. Andlauer (2014) Fermentation of Plant Material-Effect on Sugar Content and Stability of Bioactive Compounds. PJFNS 64: 235-241.
  23. Nuha, M. O., A. M. A. Isam, and E. B. Elfadil (2010) Chemical composition, antinutrients and extractable minerals of Sicklepod (Cassia obtusifolia) leaves as influenced by fermentation and cooking. Int. Food Res. J. 17: 775-785.
  24. Ifesan, B. O. T., O. O. Egbewole, and B. T. Ifesan (2014) Effect of Fermentation on Nutritional Composition of Selected Commonly Consumed Green Leafy Vegetables in Nigeria. Int. J. Appl. Sci. Biotechnol. 2: 291-297.
  25. Kim, J. I., M. J. Kang, and T. W. Kwon (2003) Antidiabetic effect of soybean and chongkukjang. Korea Soybean Digest 20: 44-52.
  26. Baeg, B. G., J. I. Cho, E. W. Moon, and J. S. Park (2015) Quality Characteristics of Bamboo Shoot Liquid Fermented by Bacillus subtilis Strain. J. Korean Soc. Food Cult. 30: 233-240. https://doi.org/10.7318/KJFC/2015.30.2.233
  27. Pozo-Bayon, M. A., E. G-Alegria, M. C. Polo, C. Tenorio, P. J. Martin-Alvarez, M. T. Calvo de la Banda, F. Ruiz-Larrea, and M. V. Moreno-Arribas (2005) Wine Volatile and Amino Acid Composition after Malolactic Fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum Starter Cultures. J. Agric. Food Chem. 53: 8729-8735. https://doi.org/10.1021/jf050739y
  28. Sarkar, P. K., L. J. Jones, G. S. Craven, S. M. Somerset, and C. Palmer (1997) Amino acid profiles of kinema, a soybean-fermented food. Food Chem. 59: 69-75. https://doi.org/10.1016/S0308-8146(96)00118-5
  29. Lee, Y. S. (2007) Antioxidative and physiological activity of extracts of Angelica dahurica leaves. Korean J. Food Preserv. 14: 78-86.
  30. Jeong, C. H., C. W. Jang, K. Y. Lee, I. H. Kim, and K.W. Shim (2012) Chemical components and anti-oxidant activities of black currant. Korean J. Food Preserv. 19: 263-270. https://doi.org/10.11002/kjfp.2012.19.2.263
  31. Fraga, C. G., M. Galleano, S. V. Verstraeten, and P. I. Oteiza (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31: 435-445. https://doi.org/10.1016/j.mam.2010.09.006
  32. Hur, S. J., S. Y. Lee, Y. C. Kim, I. Choi, and G. B. Kim (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160: 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112
  33. Adetuyi, F. O. and T. A. Ibrahim (2014) Effect of Fermentation Time on the Phenolic, Flavonoid and Vitamin C Contents and Antioxidant Activities of Okra (Abelmoschus esculentus) Seeds. NIFOJ 32: 128-137.
  34. Choi, M. H., Y. J. Jeon, and H. J. Shin (2015) Anthocyanin Analysis of Pressure-extracted Korean Blueberry Juice and in vitro Antiinflammatory in RAW267.4 Cell line. KSBB J. 30: 191-196. https://doi.org/10.7841/ksbbj.2015.30.4.191
  35. Tan, J., W. Dai, M. Lu, H. Lv, L. Guo, Y. Zhang, Y. Zhu, Q. Peng, and Z. Lin (2016) Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Res. Int. 79: 106-113. https://doi.org/10.1016/j.foodres.2015.11.018
  36. Romero, C., M. Brenes, P. Garcia, A. Garcia, and A. Garrido (2004) Polyphenol changes during fermentation of naturally black olives. J. Agric. Food Chem. 52: 1973-1979. https://doi.org/10.1021/jf030726p
  37. Harbaum, B., E. M. Hubbermann, Z. Zhu, and K. Schwarz (2008) Impact of Fermentation on Phenolic Compounds in Leaves of Pak Choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese Leaf Mustard (Brassica juncea Coss). J. Agric. Food Chem. 56: 148-157. https://doi.org/10.1021/jf072428o
  38. Ibrahim, N. A., S. Mustafa, and A. Ismail (2014) Effect of lactic fermentation on the antioxidant capacity of Malaysian herbal teas. Int. Food Res. J. 21: 1483-1488.
  39. Park, A., T. Ku, and I. Yoo (2015) Antioxidant properties of fermented mango leaf extracts. J. Cosmet. Sci. 66: 1-13.

Cited by

  1. Quality characteristics of kombucha made with different mixing ratios of green tea extract and yuzu juice during fermentation vol.28, pp.5, 2017, https://doi.org/10.11002/kjfp.2021.28.5.646