DOI QR코드

DOI QR Code

마그네시아 인산염 복합체의 강도 및 pH에 대한 인산염 종류의 영향

Effect of Phosphate Types on the Strength and pH of Magnesia-Phosphate Composites

  • Lee, Kyung-Ho (Department of Architectural Engineering, Graduate School, Kyonggi University) ;
  • Yang, Keun-Hyeok (Department of Plant.Architectural Engineering, Kyonggi University)
  • 투고 : 2016.09.06
  • 심사 : 2017.02.10
  • 발행 : 2017.04.20

초록

본 연구는 식생 콘크리트 개발에 대한 기초적인 연구로 낮은 pH특성을 갖는 마그네시아-인산염 복합체(MPC)의 압축강도 및 pH 특성을 평가하였다. 주요 변수는 인산염 종류이며, 8종의 인산염(암모늄계, 나트륨계, 칼륨계, 칼슘계)을 사용하여 모르타르 및 페이스트를 제작하였다. 실험결과, 제 2 인산나트륨, 제 2 인산칼륨 및 제 2 인산칼슘의 경우 MPC 모르타르의 압축강도 발현에 대한 영향은 없었다. 제 1 인산암모늄, 제 1 인산칼륨을 적용한 MPC모르타르의 경우 34MPa 이상의 압축강도가 발현되었으며, pH는 9.8이었다. 따라서 식생용 콘크리트의 결합재로 제 1 인산암모늄 및 제 1 인산칼륨인산염이 적용된 MPC가 가장 효과적일 것으로 기대된다.

As an elementary investigation to develop vegetation concrete with a relatively low pH value, magnesia-phosphate composites (MPC) were examined according to the phosphate types including Monoammonium, Monosodium, Monopotassium, Monocalcium, Diammonium, Disodium, Dipotassium, and Diacalcium phosphates. All of the MPC binders, the ratio of magnesia to phosphate was fixed to be 7:3. MPC mortars activated with Disodium, Dipotassium, and Diacalcium phosphates showed no compressive strength gain, even at age of 28 days. Meanwhile, MPC mortars with Monoammonium and Monosodium phosphates developed 28-day compressive strength of more than 34MPa, and showed a relatively low pH value below 9.8. Hence, Monoammonium and Monosodium phosphates have potentials as an activator for producing MPC-based vegetation concrete.

키워드

참고문헌

  1. Kim WJ, Kim ST, Park SJ, Ghim SY, Chun WY. A Study on the development of self-Healing smart concrete using microbial bio-mineralization. Journal of the Korea Concrete Institute. 2009 Aug;21(4):501-11. https://doi.org/10.4334/JKCI.2009.21.4.501
  2. Sierra-Beltran MG, Jonkers HM, Schlangen E. Characterization of sustainable bio-based mortar for concrete Repair. Construction and Building Materials. 2014 Sep;67:344-52. https://doi.org/10.1016/j.conbuildmat.2014.01.012
  3. Brady NC, Weil RR. Elements of the Nature and Properties of Soils. 3rd ed. New Jersey: Prentice Hall; 2009. 576 p.
  4. Lee KH, Yang KH. Evaluation of pH and compressive strength development of alpha-calcium sulfate hemihydrate-based binder. Journal of the Korea Institute of Building Construction. 2016 Feb;16(1):59-65. https://doi.org/10.5345/JKIBC.2016.16.1.059
  5. Iyengar SR, Al-Tabbaa A. Developmental study of a low-pH magnesium phosphate cement for environmental applications. Environmental Technology. 2010 28(12):1387-401. https://doi.org/10.1080/09593332808618899
  6. Kang IS, Ahn MY, Paik MS, Jung SJ. A study on field and hydration properties ultra rapid hardening mortar using magnesia-phosphate cement. Journal of the Architectural Institute of Korea (Structure & Construction). 2008 Feb;24(2):79-86.
  7. Kang SP, Kim JH. Ilfluence of mixing factors on the early-age properties of magnesium potassium phosphate cement mortar. Journal of the Architectural Institute of Korea (Structure & Construction). 2015 May;31(5):61-8. https://doi.org/10.5659/JAIK_SC.2015.31.5.61
  8. Wagh AS. Chemically bonded phosphate ceramics, 1st ed. New Jersey: Elsevier; 2004. 283 p.
  9. Yang Q, Zhu B, Zhang S, Wu X. Properties and applications of magnesia-phosphate cement mortar for rapid repair of concrete. Cement and Concrete Research. 2000 Nov;30(11): 1807-13. https://doi.org/10.1016/S0008-8846(00)00419-1
  10. Neville AM. Properties of concrete, 5th ed. New Jersey: Prentice Hall; 2011. 846 p.
  11. Kim DY. Physical and chemical characteristics of MgO based mortar for cultural heritage conservation [Master's thesis]. [Seoul (Korea)]: Seoul National University; 2014. 87 p.
  12. Kang IS. A study on the basic properties of ultra rapid Hardening mortar using magnesia-phosphate cement [Master's thesis]. [Yongin (Korea)]. Dankook University; 2008. 89 p.