DOI QR코드

DOI QR Code

System Reliability Analysis Considering Correlation of Performances

성능의 상관관계를 고려한 시스템 신뢰성 해석

  • Received : 2016.07.29
  • Accepted : 2016.12.10
  • Published : 2017.04.01

Abstract

Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

신뢰성 해석은 설계변수의 공차나 환경변수 및 재료 물성치의 불확실성으로 인해 발생하는 제품성능의 불확실성을 고려하기 위해 제품의 신뢰도를 평가하는 기법이다. 기존의 많은 신뢰성 해석 기법은 성능의 신뢰도를 독립적으로 계산한다. 그러나 실제 공학 문제에서 시스템의 성능은 상관관계를 가질 수 있으며 이로 인해 전체 시스템의 신뢰도와 성능의 신뢰도 사이에 차이가 발생한다. 본 연구에서는 코플라를 이용하여 시스템에서 상관관계가 있는 성능의 결합확률밀도함수를 추정하고 이를 이용하여 시스템의 신뢰도를 평가하는 시스템 신뢰성 해석 기법을 제안한다. 수학예제를 통하여 제안하는 기법의 정확성을 검증하고 트러스 구조물에 시스템 신뢰성 해석 기법을 적용하여 제안하는 기법의 유용성을 확인한다.

Keywords

References

  1. Buslenko, N. P., Golenko, D. I., Shreider, Y. A., Sobol, I. M. and Sragowich, V. G., 1994, The Monte Carlo Method, Pergamon Press.
  2. Cornell, C. A., 1969, "A Probability-based Structural Code," Journal of the American Concrete Institute, Vol. 66, No. 12, pp. 974-985.
  3. Breitung, K., 1984, "Asymptotic Approximations for Multinormal Integrals," Journal of Engineering Mechanics Division, ASCE, Vol. 110, No. 3, pp. 357- 366. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
  4. Rahman, S. and Xu, H., 2004, "A Univariate Dimension-Reduction Method for Multi-Dimensional Integral in Stochastic Mechanics," Probabilistic Engineering Mechanics, Vol. 19, No. 4, pp. 357-366.
  5. Jung, J. J., 2007, Multiplicative Decomposition Method for Accurate Moment-Based Reliability Analysis, Ph.D. thesis, Hanyang University.
  6. Lim, W. and Lee, T. H., 2012, "Reliability-based Design Optimization Using Akaike Information Criterion for Discrete Information," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 8, pp. 921-927. https://doi.org/10.3795/KSME-A.2012.36.8.921
  7. Noh, Y., Choi, K. K. and Lee, I., 2010, "Identification of Marginal and Joint CDFs using Bayesian Method for RBDO," Structural Multidisciplinary Optimization, Vol. 40, pp. 35-51. https://doi.org/10.1007/s00158-009-0385-1
  8. Ditlevsen, O., 1979, "Narrow Reliability Bounds for Structural Systems," Journal of Structural Mechanics, Vol. 7, No. 4, 453-472. https://doi.org/10.1080/03601217908905329
  9. Lee, I., Choi, K. K. and Gorsich, D., 2010, "System Reliability-based Design Optimization using the MPPBased Dimension Reduction Method," Structural Multidisciplinary Optimization, Vol. 41, pp. 823-839. https://doi.org/10.1007/s00158-009-0459-0
  10. Park, C., Kim, N. H. and Haftka, R. T., 2015, "The Effect of Ignoring Dependence between Failure Modes on Evaluating System Reliability," Structural Multidisciplinary Optimization, Vol. 52, pp. 251-268. https://doi.org/10.1007/s00158-015-1239-7
  11. Nelsen, R.B., 2006, An Introduction to Copulas, Springer.