DOI QR코드

DOI QR Code

아세트알데히드와 오존 복합악취 저감을 위한 망간기반 촉매 성능 연구

A Study on the Removal of Complex Odor including Acetaldehyde and Ozone Over Manganese-based Catalysts

  • 서민혜 (고등기술연구원 신소재공정센터) ;
  • 이민석 (고등기술연구원 신소재공정센터) ;
  • 이수영 (고등기술연구원 신소재공정센터) ;
  • 조성수 (고등기술연구원 신소재공정센터) ;
  • 엄성현 (고등기술연구원 신소재공정센터)
  • Seo, inhye (Advanced Materials and Processing Center, Institute for Advanced Engineering) ;
  • Lee, Minseok (Advanced Materials and Processing Center, Institute for Advanced Engineering) ;
  • Lee, Sooyoung (Advanced Materials and Processing Center, Institute for Advanced Engineering) ;
  • Cho, Sungsu (Advanced Materials and Processing Center, Institute for Advanced Engineering) ;
  • Uhm, Sunghyun (Advanced Materials and Processing Center, Institute for Advanced Engineering)
  • 투고 : 2016.12.30
  • 심사 : 2017.01.26
  • 발행 : 2017.04.10

초록

본 연구에서는 대형 직화구이 음식점으로부터 배출되는 유증기 및 미세먼지 제거를 위해 습식 플라즈마 전기집진 공정을 적용할 경우, 집진공정 후단에서 나오는 잔여 오존을 활용하여 제거되지 않은 아세트알데히드와 오존을 제거함으로써 복합악취를 저감할 수 있는 오존 산화 촉매 공정을 개발하였다. 망간산화물 기반 촉매는 분말 촉매 제조 후 압출하여 펠렛 형태로 성형하였으며, 성형촉매 상에서 아세트알데히드와 오존 모두 높은 제거율을 나타낼 수 있도록 최적 조건을 도출하고자 하였다. 제조한 $Mn_2O_3$$CuMnO_x$ 촉매는 각각의 성능을 평가하였으며, 이 두 가지 촉매를 2단으로 적용하였을 때 공간속도 $10,000h^{-1}$, 반응온도 $100^{\circ}C$인 조건에서 아세트알데히드는 85% 이상, 오존은 100% 저감시킬 수 있었다.

In this study, we report on the catalyst process installed in conjunction with a wet plasma electrostatic precipitator to remove the oil mist and fine dust emitted from large-size grill restaurants. The multi-stage catalyst module reduced odor through catalytic reaction of acetaldehyde on catalysts even at an ambient temperature with ozone as an oxidant readily produced in a wet plasma electrostatic precipitator. Two types of manganese-based catalysts, $Mn_2O_3$ and $CuMnO_x$ were fabricated by extrusion molding for structured catalysts in practical applications, and the optimum conditions for high removal efficiencies of acetaldehyde and ozone were determined. When two optimized catalysts were applied in a two-stage catalyst module, the removal efficiency of acetaldehyde and ozone were ${\geq}85%$ and 100% respectively at the space velocity of $10,000h^{-1}$ and the reaction temperature of $100^{\circ}C$.

키워드

참고문헌

  1. D. W. Hong, S. J. Kim, D. H. Moon, C. H. Joo, and J. P. Lee, Emission characteristics of odor compounds from a livestock wastewater treatment process. J. Korean Soc. Odor Res. Eng., 6(1), 1-9 (2007).
  2. Y. M. Cho, Y. J. Choi, and M. J. Hong, Study on the Management of Odor Emission in Seoul, Research Report 2013-PR-76, The Seoul Institute, Seoul (2014).
  3. J. Chaichanawong, W. Tanthapanichakoon, T. Chariinpanitkul, A. Eiad-ua, N. Sano, and H. Tamon, High-temperature simultaneous removal of acetaldehyde and ammonia gases using corona discharge, Sci. Tech. Adv. Mater., 6, 319-324 (2005). https://doi.org/10.1016/j.stam.2005.02.010
  4. H. H. Kim, I. Yamamoto, K. Takashima, S. Katsura, and A. Mizuno, Incinerator flue gas cleaning using wet-type electrostatic precipitator, J. Chem. Eng. Jpn., 33(4), 669-674 (2000). https://doi.org/10.1252/jcej.33.669
  5. J. V. Durme, J. Dewulf, K. Demeestere, C. Leys, and H. V. Langenhove, Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity, Appl. Catal. B, 87, 78-83 (2009). https://doi.org/10.1016/j.apcatb.2008.08.015
  6. J. Van Durme, J. Dewulf, C. Leys, and H. V. Langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A re view, Appl. Catal. B, 78, 324-333 (2008). https://doi.org/10.1016/j.apcatb.2007.09.035
  7. S. H. Park, J. K. Jeon, S. C. Kim, S. C. Jung, and Y. K. Park, Recent trends on catalytic oxidation of benzene without or with ozone over Mn-based catalysts, Appl. Chem. Eng., 25(3), 237-241 (2014). https://doi.org/10.14478/ace.2014.1050
  8. B. A. Tichenor and M. A. Palazzolo, Destruction of volatile organic compounds via catalytic incineration, Environ. Prog., 6(3), 172-176 (1987). https://doi.org/10.1002/ep.670060328
  9. H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites, Catal. Commun., 8, 557-560 (2007). https://doi.org/10.1016/j.catcom.2006.07.024
  10. H. Einaga and A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, J. Hazard. Mater., 164, 1236-1241 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.032
  11. D.-Z. Zhao, C. Shi, X.-S. Lin, A.-M. Zhu, and B. W.-L. Jang, Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over $MnO_x$ catalysts at room temperature, J. Hazard. Mater., 239-240, 362-369 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.009
  12. F. C. Buciuman, F. Patcas, and T. Hahn, A spillover approach to oxidation catalysis over copper and manganese mixed oxides, Chem. Eng. Process., 38, 563-569 (1999). https://doi.org/10.1016/S0255-2701(99)00053-7
  13. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with $NH_3$, Catal. Today, 111, 236-241 (2006). https://doi.org/10.1016/j.cattod.2005.10.032
  14. S. C. Jung and S. H. Lee, Practical application of Mn-Cu metal catalyst for the removal of acetaldehyde, Digit. Policy Res., 10(8), 201-210 (2012).
  15. H. H. Lee, K. H. Park, and W. S. Cha, Characterization of low temperature selective catalytic reduction over Ti added Mn-Cu metal oxides, Appl. Chem. Eng., 24(6), 599-604 (2013). https://doi.org/10.14478/ace.2013.1057
  16. J. Papavasiliou, G. Avgouropoulos, and T. Ioannides, Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts, J. Catal., 251, 7-20 (2007). https://doi.org/10.1016/j.jcat.2007.07.025
  17. F. Kapteijn, L. Singoredjo, M. Vandriel, A. Andreini, J. A. Moulijn, G. Ramis, and G. Busca, Alumina-supported manganese oxide catalysts: II. Surface characterization and adsorption of ammonia and nitric oxide, J. Catal., 150(1), 105-116 (1994). https://doi.org/10.1006/jcat.1994.1326

피인용 문헌

  1. 촉매법을 적용한 오존 저감형 플라즈마 기기 vol.34, pp.1, 2017, https://doi.org/10.4313/jkem.2021.34.1.56