The Function of Signs and Attention in Teaching-Learning of Mathematics

수학 교수-학습에서 기호와 주의의 역할

  • Received : 2017.02.10
  • Accepted : 2017.03.04
  • Published : 2017.03.31

Abstract

The purpose of this study is to capture and explain the roles that signs and attention play in the fraction learning process, through a previous study that employs Deleuze's perspective on sign and the role of attention. From this case study of elementary school students, we found that signs are a prerequisite for learning and that learning takes place as different forms of attention shifts. The various types of semiotic resources used by teachers and students have been found to play an important role in coordinating collective attention between teachers and students.

지난 수십 년 동안, 구성주의의 자장 속에서 많은 수학교육이론은 학습 주체가 자신의 능동적인 구성 작용을 통해 스스로 수학적 의미를 구성하고 정교화 한다고 주장하였다. 하지만 최근 이루어지는 기호학적 접근은 수학적 인지의 수동적이고 집단적인 측면을 강조하며 위와 같은 구성주의의 기조를 문제시하고 있다. 본고에서는 Deleuze의 기호에 대한 논의 그리고 주의에 대한 선행연구의 통찰을 이용하여, 수학 교수-학습 과정을 설명하는 새로운 틀을 제시하고자 한다. 분석 결과, 수학적 의미는 기호에 의해 강제적이고 수동적으로 학습 주체 앞에 모호하게 펼쳐진다는 점 그리고 교사와 학생은 그 모호한 의미를 공동으로 전환하며 명료하게 만들어나간다는 점이 밝혀졌다. 이러한 관점은 과제와 교사의 역할을 재고하도록 하는 출발점이 된다.

Keywords

References

  1. 곽호완, 박창호, 이태연, 김문수, 진영선(2008). 실험심리학 용어사전. 서울: 시그마프레스.
  2. 김재춘, 배지현(2016). 들뢰즈와 교육: 차이생성의 배움론. 서울: 학이시습.
  3. 노정원, 이경화(2016). 들뢰즈의 인식론과 수학학습. 학교수학, 18(3), 733-747.
  4. 우정호(2013). 수학 학습-지도 원리와 방법. 서울: 서울대학교출판문화원
  5. 이남인(2013). 후설과 메를로-퐁티 지각의 현상학. 경기: 한길사.
  6. Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana De Investigation En Mathematica Educativa, Special issue on Semiotics, Cultures, and Mathematical Thinking (Guest Editors: L. Radford & B. D' Amore), 267-299.
  7. de Freitas, E & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1-2), 133-152. https://doi.org/10.1007/s10649-011-9364-8
  8. de Freitas, E & Sinclair, N. (2013). New materialist ontologies in mathematics education: the body in/of mathematics. Educational Studies in Mathematics, 83, 453-470. https://doi.org/10.1007/s10649-012-9465-z
  9. de Freitas, E & Sinclair, N (2014). Mathematics and the body: Material entanglement in the classroom. Cambridge: Cambridge University Press.
  10. Delueze, G. (2004). 차이와 반복. (김상환 역). 서울: 민음사. (프랑스어초판은 1968년 출판)
  11. Ferrara, F., & Ferrari, G. (2017). Agency and assemblage in pattern generalisation: a materialist approach to learning, Educational Studies in Mathematics, 94(1), 21-36. https://doi.org/10.1007/s10649-016-9708-5
  12. Kwon, M-S. (2015). Supporting students to develop mathematical explanation: Studying the work of teaching. doctoral dissertation, University of Michigan, Ann Arbor, MI.
  13. Mason, J. (2004). Doing‚ construing and doing + discussing‚ learning: The importance of the structure of attention. Lecture at the Tenth International Congress of Mathematics Education, Copenhagen. Retrieved February 21, 2005 from www.mcs.open.ac.uk/cme/JHMFurthPartics.htm/conference
  14. Merleau-Ponty, M. (1945). Phenomenology of perception. London: Routledge.
  15. Presmeg, N., Radford, R., Roth, W-M., & Kadunz, G. (2016). Semiotics in Mathematics Education. ICME-13 Topical Surveys. Springer International Publishing.
  16. Radford, L. (2009). "No! He starts walking backwards!": interpreting motion graphs and the question of space, place and distance. ZDM-The International Journal on Mathematics Education, 41, 467-480. https://doi.org/10.1007/s11858-009-0173-9
  17. Radford, L. (2010), The eye as a theoretician: Seeing structures in generalizing activities. For the Learning of Mathematics, 30(2).
  18. Radford, L. (2013), Three key concepts of the theory of objectification: Knowledge, knowing, and learning, Journal of Research in Mathematics Education, 2(1), 7-44.
  19. Radford, L & Roth, W. M. (2011), Intercorporeality and ethical commitment: an activity perspective on classroom interaction, Educational Studies in Mathematics, 77, 227-245. https://doi.org/10.1007/s10649-010-9282-1
  20. Radford, L., Schubring, G., & Seeger, F. (2011). Signifying and meaning-making in mathematical thinking, teaching, and learning. Educational Studies in Mathematics, 77, 149-156. https://doi.org/10.1007/s10649-011-9322-5
  21. Roth, W. M. (2011), Passibility: At the limits of the constructivist metaphor (Vol. 3). New York: Springer.
  22. Seeger, F. (2011). On meaning making in mathematics education: social, emotional, semiotic. Educational Studies in Mathematics, 77, 207-226. https://doi.org/10.1007/s10649-010-9279-9
  23. Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: the murky and furtive world of mathematical inventiveness. ZDM, 45(2), 239-252. https://doi.org/10.1007/s11858-012-0465-3
  24. Thom, J. S., & Roth, W. M. (2011). Radical embodiment and semiotics: toward a theory of mathematics in the flesh. Educational Studies in Mathematics, 77(2-3), 267-284. https://doi.org/10.1007/s10649-010-9293-y
  25. Towers, J., & Martin, L. C. (2015). Enactivism and the study of collectivity. ZDM, 47(2), 247-256. https://doi.org/10.1007/s11858-014-0643-6
  26. Watson, A. & Mason, J. (2015). 색다른 학교수학. (이경화 역). 서울: 경문사. (영어 원작은 2005년 출판).
  27. Zagorianakos, A & Shvarts, A. (2015). The role of intuition in the process of objectification of mathematical phenomena from a Husserlian perspective: a case study. Educational Studies in Mathematics, 88, 137-157. https://doi.org/10.1007/s10649-014-9576-9