References
- 곽호완, 박창호, 이태연, 김문수, 진영선(2008). 실험심리학 용어사전. 서울: 시그마프레스.
- 김재춘, 배지현(2016). 들뢰즈와 교육: 차이생성의 배움론. 서울: 학이시습.
- 노정원, 이경화(2016). 들뢰즈의 인식론과 수학학습. 학교수학, 18(3), 733-747.
- 우정호(2013). 수학 학습-지도 원리와 방법. 서울: 서울대학교출판문화원
- 이남인(2013). 후설과 메를로-퐁티 지각의 현상학. 경기: 한길사.
- Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana De Investigation En Mathematica Educativa, Special issue on Semiotics, Cultures, and Mathematical Thinking (Guest Editors: L. Radford & B. D' Amore), 267-299.
- de Freitas, E & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1-2), 133-152. https://doi.org/10.1007/s10649-011-9364-8
- de Freitas, E & Sinclair, N. (2013). New materialist ontologies in mathematics education: the body in/of mathematics. Educational Studies in Mathematics, 83, 453-470. https://doi.org/10.1007/s10649-012-9465-z
- de Freitas, E & Sinclair, N (2014). Mathematics and the body: Material entanglement in the classroom. Cambridge: Cambridge University Press.
- Delueze, G. (2004). 차이와 반복. (김상환 역). 서울: 민음사. (프랑스어초판은 1968년 출판)
- Ferrara, F., & Ferrari, G. (2017). Agency and assemblage in pattern generalisation: a materialist approach to learning, Educational Studies in Mathematics, 94(1), 21-36. https://doi.org/10.1007/s10649-016-9708-5
- Kwon, M-S. (2015). Supporting students to develop mathematical explanation: Studying the work of teaching. doctoral dissertation, University of Michigan, Ann Arbor, MI.
- Mason, J. (2004). Doing‚ construing and doing + discussing‚ learning: The importance of the structure of attention. Lecture at the Tenth International Congress of Mathematics Education, Copenhagen. Retrieved February 21, 2005 from www.mcs.open.ac.uk/cme/JHMFurthPartics.htm/conference
- Merleau-Ponty, M. (1945). Phenomenology of perception. London: Routledge.
- Presmeg, N., Radford, R., Roth, W-M., & Kadunz, G. (2016). Semiotics in Mathematics Education. ICME-13 Topical Surveys. Springer International Publishing.
- Radford, L. (2009). "No! He starts walking backwards!": interpreting motion graphs and the question of space, place and distance. ZDM-The International Journal on Mathematics Education, 41, 467-480. https://doi.org/10.1007/s11858-009-0173-9
- Radford, L. (2010), The eye as a theoretician: Seeing structures in generalizing activities. For the Learning of Mathematics, 30(2).
- Radford, L. (2013), Three key concepts of the theory of objectification: Knowledge, knowing, and learning, Journal of Research in Mathematics Education, 2(1), 7-44.
- Radford, L & Roth, W. M. (2011), Intercorporeality and ethical commitment: an activity perspective on classroom interaction, Educational Studies in Mathematics, 77, 227-245. https://doi.org/10.1007/s10649-010-9282-1
- Radford, L., Schubring, G., & Seeger, F. (2011). Signifying and meaning-making in mathematical thinking, teaching, and learning. Educational Studies in Mathematics, 77, 149-156. https://doi.org/10.1007/s10649-011-9322-5
- Roth, W. M. (2011), Passibility: At the limits of the constructivist metaphor (Vol. 3). New York: Springer.
- Seeger, F. (2011). On meaning making in mathematics education: social, emotional, semiotic. Educational Studies in Mathematics, 77, 207-226. https://doi.org/10.1007/s10649-010-9279-9
- Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: the murky and furtive world of mathematical inventiveness. ZDM, 45(2), 239-252. https://doi.org/10.1007/s11858-012-0465-3
- Thom, J. S., & Roth, W. M. (2011). Radical embodiment and semiotics: toward a theory of mathematics in the flesh. Educational Studies in Mathematics, 77(2-3), 267-284. https://doi.org/10.1007/s10649-010-9293-y
- Towers, J., & Martin, L. C. (2015). Enactivism and the study of collectivity. ZDM, 47(2), 247-256. https://doi.org/10.1007/s11858-014-0643-6
- Watson, A. & Mason, J. (2015). 색다른 학교수학. (이경화 역). 서울: 경문사. (영어 원작은 2005년 출판).
- Zagorianakos, A & Shvarts, A. (2015). The role of intuition in the process of objectification of mathematical phenomena from a Husserlian perspective: a case study. Educational Studies in Mathematics, 88, 137-157. https://doi.org/10.1007/s10649-014-9576-9