DOI QR코드

DOI QR Code

Dissolution of degummed Antheraea yamamai silkworm cocoon

  • Jo, You-Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Bae, Sung Min (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
  • Received : 2017.03.30
  • Accepted : 2017.03.30
  • Published : 2017.03.31

Abstract

Dissolution of Antheraea yamamai silkworm cocoon was carried out in various solvent systems with various dissolving conditions including dissolution salts, salt concentration, dissolving temperature, and time. General chaotropic salt for Bombyx mori silk fibroin does not work for A. yamamai silkworm cocoon. Lithium bromide 9.3 M at $100^{\circ}C$ also does not work to dissolve wild silkworm cocoon. However, 9 M of lithium thiocyanate treatment at $100^{\circ}C$ induced 100% dissolution of wild silkworm cocoon. But it could not be dissolved lower than $60^{\circ}C$. Like lithium thiocyanate, less than $60^{\circ}C$ treatment with molten calcium nitrate 4 hydrate could not dissolve wild silkworm cocoon. As the dissolution temperature increased up to $100^{\circ}C$, the solubility of wild one was reached over 90%. SDS-PAGE showed broad tailing stream pattern that means the molecule of wild silk was depolymerized with dissolution temperature and time. From the above results, the best chaotropic salt for A.yamamai silkworm cocoon is calcium nitrate 4 hydrate.

Keywords

References

  1. Aramwit P, Sangcakul A (2007) The effects of sericin cream on wound healing in rats. Biosci Biotechnol Biochem 71, 2473-2477. https://doi.org/10.1271/bbb.70243
  2. Cheng GT, Wang X, Tao SJ, Xia J, Xu S (2015) Differences in regenerated silk fibroin prepared with different solvent systems: from structure to conformational changes. J Appl Polym Sci 132, 41959.
  3. Ju WT, Kim KY, Sung GB, Kim YS (2014) Quantitative analysis of 1-Deoxynojirimycin content using silkworm genetic resources. Int J Indust Entomol 29(2), 162-168. https://doi.org/10.7852/ijie.2014.29.2.162
  4. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. Paper patch. Wound Rep Regen 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  5. Kim JH, Shin BS, Lee KG, Yeo JH, Kweon HY (2009) Sericinjam sericin: structural and thermal properties. Int J Indust Entomol 19, 255-258.
  6. Kim SJ, Um IC (2016) Storage stability of silk solution for viscosity and electrospinnability. Int J Indust Entomol 33, 138-143. https://doi.org/10.7852/ijie.2016.33.2.138
  7. Kim SK, Jo YY, Lee KG, Lee HS, Yeo JH, Kweon HY (2014) Preparation and characterization of silk beads for protein delivery system. Int J Indust Entomol 28, 66-70. https://doi.org/10.7852/ijie.2014.28.2.66
  8. Kundu B, Rajkhowa R, Kundu SC, Wang X. (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65, 457-470. https://doi.org/10.1016/j.addr.2012.09.043
  9. Kweon HY, Yeo JH, Kim KY, Kim YS, Song HS, Kim SJ, Woo SO, Han SM, Lee KG (2009) Characteristics of silk sericin extracted from sericinjam. Int J Indust Entomol 18, 121-124.
  10. Kweon HY, Lee KG, Yeo JH, Park YH (2003) Dissolution of Antheraea pernyi silk fiber and structure of regenerated fibroin from zinc nitrate solution. Korean J Seric Sci 45, 121-125.
  11. Kweon HY, Park YH (2001) Dissolution and characterization of regenerated Antheraea pernyi silk fibroin. J Appl Polym Sci 82, 750-758. https://doi.org/10.1002/app.1901
  12. Kweon HY (1998) Structural characteristics of Anthereae pernyi silk fibroin film regenerated from calcium nitrate solution. Ph.D. Thesis, Seoul National University, Seoul.
  13. Kweon HY, Park YH (1994) Structural characteristics and physical properties of wild silk fibers; Antheraea pernyi and Antheraea yamamai. Korean J Seric Sci 36, 138-146.
  14. Lammli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  15. Lee KG, Chung DE, Kim KY, Jo YY, Kim HB, Kim SK, Kweon HY (2015) General characteristics of Antheraea yamamai silkworm cocoon cultured in Korea. J Seric Entomol Sci 53, 6-11.
  16. Lee KG, Jo YY, Yeo JH, Lee HS, Kim KY, Park KY, Kweon HY (2013) Dissolution of Antheraea pernyi raw silk with calcium nitrate ethanol solution. J Seric Entomol Sci 51, 15-19.
  17. Liu Y, Zhang Y (2014) Control of the gelation process of silk fibroin solution. Therm Sci 18, 1587-1590. https://doi.org/10.2298/TSCI1405587L
  18. Minoura N, Tsukada M, Nagura M (1990) Fine structure and oxygen permeability of silk fibroin membrane treated with methanol. Polymer 31, 265-269. https://doi.org/10.1016/0032-3861(90)90117-H
  19. Minoura N, Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208, 511-516. https://doi.org/10.1006/bbrc.1995.1368
  20. Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal, Cell 44, 517-518. https://doi.org/10.1016/0092-8674(86)90259-X
  21. Sakabe H, Itoh H, Miyamoto T, Nishiki Y, Ha WS (1989) In vivo blood compatibility of regenerated silk fibroin. Sen-I Gakkaishi 45, 487-490. https://doi.org/10.2115/fiber.45.11_487
  22. Shin BS, Jeon JY, Kim JH (2012) Cocoon characteristics of Antheraea pernyi silkworm reared in Korean oak field. Int J Ind Entomol 25, 205-208.
  23. Shin BS, Jeon JY, Kim JH (2015) Degumming of Antheraea yamamai silkworm cocoon. Int J Ind Entomol 31, 127-131.
  24. Tsukada M, Freddi G, Gotoh Y, Kasai N (1994) Physical and chemical properties of tussah silk fibroin film. J Polym Sci Pol Phys 32, 1407-1412. https://doi.org/10.1002/polb.1994.090320812
  25. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32, 991-1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013
  26. Wang J, Yi H, Wei Y (2011) Preliminary biocompatibility evaluation of regenerated Antheraea yamamai silk fibroin in vitro. J Wuhan Univ Tech Mater Sci Ed 26, 1044-1048. https://doi.org/10.1007/s11595-011-0360-8
  27. Wei Y, Sun D, Yi H, Wang J (2014) Chracterization of a PEG-DE crosslinked tubular silk scaffold. Text Res J 84, 959-967. https://doi.org/10.1177/0040517513512401
  28. You R, Xu Y, Liu Y, Li X, Li M (2014) Comparison of the in vivo and in vitro degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms. Biomed Mater 10, 015003. https://doi.org/10.1088/1748-6041/10/1/015003

Cited by

  1. Spectroscopic analysis of Muga silk nanoparticles synthesized by microwave method vol.68, pp.2, 2017, https://doi.org/10.1002/bab.1932