DOI QR코드

DOI QR Code

Evaluation of Drought Tolerance using Anthesis-silking Interval in Maize

  • Kim, Hyo Chul (Department of Life Science, Dongguk University-Seoul) ;
  • Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon National University) ;
  • Kim, Jae Yoon (Department of Plant Resources, Kongju National University) ;
  • Song, Kitae (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Kyung-Hee (Department of Life Science, Dongguk University-Seoul) ;
  • Lee, Byung-Moo (Department of Life Science, Dongguk University-Seoul)
  • Received : 2016.09.25
  • Accepted : 2016.12.15
  • Published : 2017.03.31

Abstract

We screened the drought tolerant maize using seventeen maize genotypes from different sources, nine inbred genotypes from United States Department of Agriculture (USDA) (B73, CML103, CML228, CML277, CML322, CML69, Ki3, Ki11, and NC350), three Southeast Asian genotypes (DK9955, LVN-4, and 333), and five Korean hybrids (Cheongdaok, Gangdaok, Ilmichal, Kwangpyeongok, and Pyeonganok). We evaluated anthesis-silking interval (ASI), leaf senescence (LS), ears per plant (EPP), tassel length (TL), and fresh weight (FW) at silking date. According to ASI and LS examination, CML103 and Kill were drought tolerant genotypes, wheareas Ki3 and 333 were drought susceptible. EPP, TL, and FW differed according to drought resistance. Grain yield was correlated strongly with ASI, but moderately with LS. Difference in ASI between drought-stressed (DS) and well-watered (WW) conditions was less than three days in CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok, whereas that of Ki3, Pyeonganok, and Gangdaok was more than 6.5 days. We concluded that CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok are drought tolerant genotypes, whereas Ki3, Pyeonganok, and Gangdaok are drought susceptible.

Keywords

References

  1. Andersen, M. N., F. Asch, Y. Wu, C. R. Jensen, H. Naested, V. O. Mogensen, and K. E. Koch. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion sensitive phase of young ovary development in maize. Plant Physiol. 130 : 591-604. https://doi.org/10.1104/pp.005637
  2. Angus, J. F., and M. W. Moncur. 1977. Water stress and phenology in wheat. Aust. J. Agric Res. 28(2) : 177-181. https://doi.org/10.1071/AR9770177
  3. Araus, J. L., G. A. Slafer, C. Royo, and M. D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences 27(6) : 377-412. https://doi.org/10.1080/07352680802467736
  4. Ashraf, M. 1989. Effect of water stress on maize cultivars during the vegetative stage. Ann. Arid Zone 28 : 47-55.
  5. Athar, H., and M. Ashraf. 2005. Photosynthesis under drought stress. In: Pessarakli, M. (ed.): Photosynthesis. 2nd ed. CRC press. pp. 793-804.
  6. Banzinger, M., G. O. Edmeades, D. L. Beck, and M. Bellon. 2000. Breeding for drought and N stress tolerance in maize: from theory to practice. CIMMYT, Mexico, D. F.
  7. Bassetti, P., and M. E. Westgate. 1993a. Senescence and receptivity of maize silks. Crop Sci. 33 : 275-278. https://doi.org/10.2135/cropsci1993.0011183X003300020012x
  8. Bassetti, P., and M. E. Westgate. 1993b. Water deficit affects receptivity of maize silks. Crop Sci. 33 : 279-282. https://doi.org/10.2135/cropsci1993.0011183X003300020013x
  9. Bawa, A., I. K. Addai, and J. X. Kugbe. 2015. Evaluation of some genotypes of maize (Zea mays L.) for tolerance to drought in Northern Ghana. Plant Biol. 5(6) : 19-29.
  10. Beck, D., F. J. Betran, M. Banziger, M. Willcox, and G. O. Edmeades. 1996. From landrace to hybrid: strategies for the use of source populations and lines in the development of drought-tolerant cultivars. In Edmeades G. O., M. Banziger, H. R. Mickelson, and C. B. Pena-Valdivia. (ed.) Developing drought and low N tolerant maize. Proceedings of a Symposium. El Batan. 25-29 March 1996. CIMMYT, El Batan, Mexico.
  11. Beck, E. H., S. Fettig, C. Knake, K. Hartig, and T. Bhattarai. 2007. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32(3) : 501-510. https://doi.org/10.1007/s12038-007-0049-5
  12. Bolanos, J., and G. O. Edmeades. 1993. Eight cycle of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 31 : 269-289. https://doi.org/10.1016/0378-4290(93)90066-V
  13. Bolanos, J., and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1) : 65-80. https://doi.org/10.1016/0378-4290(96)00036-6
  14. Bruce, W. B., G. O. Edmeades, and T. C. Barker. 2002. Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 53 : 13-25. https://doi.org/10.1093/jexbot/53.366.13
  15. Buckler, E. S., J. B. Holland, P. J. Bradbury, C. Acharya, and P. J. Brown, C. Browne, E. Ersoz, S. F. Garcia, A. Garcia, J. C. Glaubitz, M. M. Goodman, C. Harjes, K. Guill, D. E. Kroon, S. Larsson, N. K. Lepak, H. Li, S. E. Mitchell, G. Pressoir, J. A. Peiffer, M. O. Rosas, T. R. Rocheford, M. C. Romay, S. Romero, S. Salvo, H. S. Villeda, H. S. D. Silva, Q. Sun, F. Tian, N. Upadyayula, D. Ware, H. Yates, J. Yu, Z. Zhang, S. Kresovich, and M. D. McMullen. 2009. The genetic architecture of maize flowering time. Science 325 : 714-718. https://doi.org/10.1126/science.1174276
  16. Byrne, P. F., J. Bolanos, G. O. Edmeades, and D. L. Eaton. 1995. Gains from selection under drought versus multilocation 212 testing in related tropical maize populations. Crop Sci. 35 : 63-69. https://doi.org/10.2135/cropsci1995.0011183X003500010011x
  17. Chapman, S. C., and G. O. Edmeades. 1999. Selection improves drought tolerance in tropical maize populations: II Direct and correlated responses among secondary traits. Crop Sci. 39 : 1315-1324. https://doi.org/10.2135/cropsci1999.3951315x
  18. Cooper, M., C. Gho, R. Leafgren, T. Tang, and C. Messina. 2014. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65(21) : 6191-6204. https://doi.org/10.1093/jxb/eru064
  19. Earl, H. J., and R. F. Davis, 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 95(3) : 688-696. https://doi.org/10.2134/agronj2003.0688
  20. Edmeades, G. O., J. Bolanos, M. Hernandez, and S. Bello. 1993. Causes for silk delay in a lowland tropical maize population. Crop Sci. 33(5) : 1029-1035. https://doi.org/10.2135/cropsci1993.0011183X003300050031x
  21. Edmeades, G. O., J. Bolanos, A. Elings, J. M. Ribaut, M. Banziger, and M. E. Westgate. 2000. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E., and K. J. Boote. (eds). Physiology and Modeling Kernel Set in Maize. CSSA, Madison, WI, CSSA Special Publication No. 29. pp. 43-73.
  22. Edmeades, G.O., J. Bolanos, and H. R. Lafitte. 1992. Progress in breeding for drought tolerance in maize. In : Wilkinson, D. (eds). Proceedings of the 47th Annual Corn and Sorghum International Research Conference, ASTA, Washington, pp. 93-111.
  23. Edmeades, G. O., J. Bolanos, S. C. Chapman, H. R. Lafitte, and M. Banziger. 1999. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci. 39(5) : 1306-1315. https://doi.org/10.2135/cropsci1999.3951306x
  24. Erdal, S., M. Pamukcu, A. Ozturk, K. Aydinsakir, and S. Soylu. 2015. Combining abilities of grain yield and yield related traits in relation to drought tolerance in temperate maize breeding. Turk J. Field Crops 20(2) : 203-212.
  25. Farooq, M., A. Wahid, S. A. Cheema, D. J. Lee, and T. Aziz. 2002. Drought stress: Comparative time course action of foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J. Agronomy and Crop Sci. 196(5) : 336-345. https://doi.org/10.1111/j.1439-037X.2010.00422.x
  26. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29(1) : 185-212. https://doi.org/10.1051/agro:2008021
  27. Fischer, K. S., G. O. Edmeades, and E. C. Johnson. 1989. Selection for the improvement of maize yield under moisture-deficits. Field Crops Research, 22(3) : 227-243. https://doi.org/10.1016/0378-4290(89)90094-4
  28. Fuad-Hassan, A., F. Tardieu, and O. Turc. 2008. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant, Cell and Environ. 31 : 1349-1360. https://doi.org/10.1111/j.1365-3040.2008.01839.x
  29. Grant, R. F., B. S. Jackson, J. R. Kiniry, and G. F. Arkin. 1989. Water deficit timing effects on yield components in maize. Agronomy J. 81(1) : 61-65. https://doi.org/10.2134/agronj1989.00021962008100010011x
  30. Gonzalo, M., T. J. Vyn, J. B. Holland, and L. M. McIntyre. 2006. Mapping density response in maize: A direct approach for testing genotype and treatment interactions. Gent. 173(1) : 331-348.
  31. Hall, A. J., J. H. Lemcoff, and N. Trapani. 1981. Water stress before and during flowering in maize and its effects on yield, its components, and their determinants. Maydica 26 : 19-38.
  32. Harder, H. J., R. E. Carlson, and R. H. Shaw. 1982. Yield, yield components, and nutrient content of corn grains as influenced by post-silking moisture stress. Agronomy J. 74(2) : 275-278. https://doi.org/10.2134/agronj1982.00021962007400020005x
  33. Herrero, M. P., and R. R. Johnson. 1981. Drought stress and its effects on maize reproductive systems. Crop Sci. 21(1) : 105-110. https://doi.org/10.2135/cropsci1981.0011183X002100010029x
  34. Hunter, R. B., T. B. Daynard, D. J. Hume, J. W. Tanner, J. D. Curtis, and L. W. Kannenberg. 1969. Effect of tassel removal on grain yield of corn (Zea mays L.). Crop Sci. 9(4) : 405-406. https://doi.org/10.2135/cropsci1969.0011183X000900040003x
  35. Khan, M. A., S. Akbar, S. Akbar, K. Ahmad, and M. S. Baloch. 1999. Evaluation of corn hybrids for grain yield in D.I. Khan. Pakistan Journal of Biological Sciences 2(2) : 413-414. https://doi.org/10.3923/pjbs.1999.413.414
  36. Lawlor, D. W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environ. 25(2) : 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  37. Lu, Y., Z. Hao, C. Xie, J. Crossa, J. L. Arus, S. Gao, B. S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S. Taba, G. Pan, X. Li, T. Rong, S. Zhang, and Y. Xu. 2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res. 124(1) : 37-45. https://doi.org/10.1016/j.fcr.2011.06.003
  38. Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of botany 105(7) : 1141-1157. https://doi.org/10.1093/aob/mcq028
  39. Morgan, J. M. 1980. Possible role of abscisic acid in reducing seed set in water stressed wheat plants. Nature 285 : 655-657. https://doi.org/10.1038/285655a0
  40. Moss, G. I., and L. A. Downey. 1971. Influence of drought stress on female gametophyte development in corn (Zea mays L.) and subsequent grain yield. Crop Sci. 11(3) : 368-372. https://doi.org/10.2135/cropsci1971.0011183X001100030017x
  41. Nogues, S., and N. R. Baker. 2000. Effects of drought on photosynthesis in mediterranean plants grown under enhanced UV-B. J. Exp. Bot. 51(348) : 1309-1317. https://doi.org/10.1093/jexbot/51.348.1309
  42. Prasanna, B. M., K. Pixley, M. L. Waburton, and C. X. Xie. 2010. Molecular marker-assisted breeding options for maize improvement in Asia. Mol. Breeding 26(2) : 339-356. https://doi.org/10.1007/s11032-009-9387-3
  43. Quarrie, S. A., and H. G. Jones. 1977. Effects of abscisic acid and water stress on development and morphology of wheat. J. Exp. Bot. 28(1) : 192-203. https://doi.org/10.1093/jxb/28.1.192
  44. Ribaut, J. M., C. Jiang, D. Gonzalez-de-Leon, G. O. Edmeades, and D. A. Hoisington. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94 : 887-896. https://doi.org/10.1007/s001220050492
  45. Robins, J. S., and C. E. Domingo. 1953. Some effects of severe soil moisture deficits at specific growth stages in corn. Agronomy J. 45 : 618-621. https://doi.org/10.2134/agronj1953.00021962004500120009x
  46. Rowland, J. R. J. 1993. Cereal Crops. In : Rowland, J. R. J. (eds). Dry land farming in Africa, Macmillan Education Ltd., London and Basingstoke. Published in co-operation with the CTA (Technical Centre for Agricultural and Rural Co-operation), pp. 218-236.
  47. Sari-Gorla, M., P. Krajewski, N. D. Fonzo, M. Villa, and C. Frova. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99(1) : 289-295. https://doi.org/10.1007/s001220051234
  48. Schussler, J. R., and M. E. Westgate. 1991a. Maize kernel set at low water potential: I. Sensitivity to reduced assimilates during early kernel growth. Crop Sci. 31(5) : 1189-1195. https://doi.org/10.2135/cropsci1991.0011183X003100050023x
  49. Schussler, J. R., and M. E. Westgate. 1991b. Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Sci. 31(5) : 1196-1203. https://doi.org/10.2135/cropsci1991.0011183X003100050024x
  50. Setter, T. L., B. A. Flannigan, and J. Melkonian. 2001. Loss of kernel set due to water deficit and shade in maize. Crop Sci. 41(5) : 1530-1540. https://doi.org/10.2135/cropsci2001.4151530x
  51. Shin, S. H., J. S. Lee, S. G. Kim, T. H. Go, J. Y. Shon, S. G. Kang, J. S. Lee, H. H. Bae, J. T. Kim, K. B. Shim, W. H. Yang, and M. O. Woo. 2015. Yield of maize (Zea mays L.) logistically declined with increasing length of the consecutive visible wilting days during flowering. J. Crop Sci. Biotech. 18(4) : 237-248 https://doi.org/10.1007/s12892-015-0112-y
  52. Smith, C. W., J. Betran, and E. C. A. Runge. 2004. Corn: origin, history, technology, and production. Wiley series in crop science. pp. 358-360.
  53. Udomprasert, N., J. Kijjanon., K. C. Iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and Yield of corn. Kastsart J. (Nat. Sci.) 39 : 546-551.
  54. Westgate, M. E., and J. S. Boyer. 1985. Carbohydrate re-serves and reproductive development at low leaf water potentials in maize. Crop Sci. 25(5) : 762-769. https://doi.org/10.2135/cropsci1985.0011183X0025000500010x
  55. Ziyomo, C., and R. Bernardo. 2012. Drought tolerance in maize: indirect selection through secondary traits versus genome wide selection. Crop Sci. 53(4) : 1269-1275. https://doi.org/10.2135/cropsci2012.11.0651

Cited by

  1. Measurement of cooked rice stickiness with consideration of contact area in compression test pp.00224901, 2018, https://doi.org/10.1111/jtxs.12370
  2. Yearly Variation of Growth and Yield of Waxy Maize (Zea mays L.) and Soil Characteristics under Organic Rice Paddy-Upland Rotation vol.30, pp.3, 2018, https://doi.org/10.12719/KSIA.2018.30.3.225
  3. Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.) vol.64, pp.4, 2019, https://doi.org/10.7740/kjcs.2019.64.4.432
  4. RNA-Seq Analysis of Gene Expression Changes Related to Delay of Flowering Time under Drought Stress in Tropical Maize vol.11, pp.9, 2017, https://doi.org/10.3390/app11094273