DOI QR코드

DOI QR Code

Synthesis and Properties of Two Dimensional Doped Transition Metal Dichalcogenides

  • Yoon, Aram (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2017.03.27
  • Accepted : 2017.03.27
  • Published : 2017.03.30

Abstract

Since graphene was discovered in 2004, two-dimensional (2D) materials have been actively studied. Especially, 2D transition metal dichalcogenides (TMDs), such as $MoS_2$ and $WS_2$, have been the subject of significant research because of their exceptional optical, electrical, magnetic, catalytic, and morphological properties. Therefore, these materials are expected to be used in a variety of applications. Furthermore, tuning the properties of TMDs is essential to improve their performance and expand their applications. This review classifies the various doping methods of 2D TMDs, and it summarizes how the dopants interact with the materials and how the performance of the materials improves depending on the synthesis methods and the species of the dopants.

Keywords

References

  1. Al-Dulaimi N, Lewis D J, Zhong X L, Malik M A, and O'Brien P (2016) Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C 4, 2312-2318. https://doi.org/10.1039/C6TC00489J
  2. Ataca C, Sahin H, and Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983-8999. https://doi.org/10.1021/jp212558p
  3. Binnewies M, Glaum R, Schmidt M, and Schmidt P (2013) Chemical vapor transport reactions-a historical review. ZAAC 639, 219-229.
  4. Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, and Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594-1601. https://doi.org/10.1039/C5EE00751H
  5. Gao J, Kim Y D, Liang L, Idrobo J C, Chow P, Tan J, Li B, Li L, Sumpter B G, and Lu T M (2016) Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735-9743. https://doi.org/10.1002/adma.201601104
  6. Hayashi Y (2016) Pot economy and one-pot synthesis. Chem. Sci. 7, 866-880. https://doi.org/10.1039/C5SC02913A
  7. Hwang N M (2016). Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes (Vol. 60) (Springer, Seoul).
  8. Lewis D J, Tedstone A A, Zhong X L, Lewis E A, Rooney A, Savjani N, Brent J R, Haigh S J, Burke M G, and Muryn C A (2015) Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 27, 1367-1374. https://doi.org/10.1021/cm504532w
  9. Lin Y C, Dumcenco D O, Komsa H P, Niimi Y, Krasheninnikov A V, Huang Y S, and Suenaga K (2014) Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv. Mater. 26, 2857-2861. https://doi.org/10.1002/adma.201304985
  10. Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, and Shan J (2013) Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207-211. https://doi.org/10.1038/nmat3505
  11. Mouri S, Miyauchi Y, and Matsuda K (2013) Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944-5948. https://doi.org/10.1021/nl403036h
  12. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669. https://doi.org/10.1126/science.1102896
  13. Park J H and Sudarshan T S (2001) Chemical Vapor Deposition (Vol. 2) (ASM International, Illinois).
  14. Qin S, Lei W, Liu D, and Chen Y (2014) In-situ and tunable nitrogendoping of MoS2 nanosheets. Sci. Rep. 4, 7582.
  15. Sim D M, Kim M, Yim S, Choi M J, Choi J, Yoo S, and Jung Y S (2015) Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 9, 12115-12123. https://doi.org/10.1021/acsnano.5b05173
  16. Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, and Sun Y (2014) Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976-6982. https://doi.org/10.1021/nl503251h
  17. Tedstone A A, Lewis D J, Hao R, Mao S M, Bellon P, Averback R S, Warrens C P, West K R, Howard P, and Gaemers S (2015) Mechanical properties of molybdenum disulfide and the effect of doping: an in situ TEM study. ACS Appl. Mater. Interfaces 7, 20829-20834. https://doi.org/10.1021/acsami.5b06055
  18. Tedstone A A, Lewis D J, and O'Brien P (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 28, 1965-1974. https://doi.org/10.1021/acs.chemmater.6b00430
  19. Wang H, Yuan H, Hong S S, Li Y, and Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664-2680. https://doi.org/10.1039/C4CS00287C
  20. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712. https://doi.org/10.1038/nnano.2012.193
  21. Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P, Tieckelmann R, Tsai W, and Hobbs C (2014) Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275-6280. https://doi.org/10.1021/nl502603d
  22. Yu J, Lee C H, Bouilly D, Han M, Kim P, Steigerwald M L, Roy X, and Nuckolls C (2016) Patterning superatom dopants on transition metal dichalcogenides. Nano Lett. 16, 3385-3389. https://doi.org/10.1021/acs.nanolett.6b01152
  23. Zhang K, Feng S, Wang J, Azcatl A, Lu N, Addou R, Wang N, Zhou C, Lerach J, and Bojan V (2015) Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586-6591. https://doi.org/10.1021/acs.nanolett.5b02315

Cited by

  1. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors vol.9, pp.4, 2017, https://doi.org/10.1007/s40820-017-0152-6
  2. Progress in Contact, Doping and Mobility Engineering of MoS2: An Atomically Thin 2D Semiconductor vol.8, pp.8, 2018, https://doi.org/10.3390/cryst8080316
  3. for Electrocatalysis vol.24, pp.13, 2018, https://doi.org/10.1002/chem.201704158
  4. Novel structured transition metal dichalcogenide nanosheets vol.47, pp.9, 2018, https://doi.org/10.1039/C8CS00094H