DOI QR코드

DOI QR Code

Understanding the Growth Kinetics of Graphene on Cu and Fe2O3 Using Inductively-Coupled Plasma Chemical Vapor Deposition

  • Van Nang, Lam (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dong-Ok (Department of Materials Science and Engineering, Chungnam National University) ;
  • Trung, Tran Nam (Department of Materials Science and Engineering, Chungnam National University) ;
  • Arepalli, Vinaya Kumar (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2015.09.21
  • Accepted : 2015.09.30
  • Published : 2017.03.30

Abstract

High-quality graphene was synthesized on Cu foil and $Fe_2O_3$ film using $CH_4$ gas via inductively-coupled plasma chemical vapor deposition (ICPCVD). The graphene film was formed on $Fe_2O_3$ at a temperature as low as $700^{\circ}C$. Few-layer graphene was formed within a few seconds and 1 min on Cu and $Fe_2O_3$, respectively. With increasing growth time and plasma power, the graphene thickness was controllably reduced and ultimately self-limited to a single layer. Moreover, the crystal quality of graphene was constantly enhanced. Understanding the ICPCVD growth kinetics that are critically affected by ICP is useful for the controllable synthesis of high-quality graphene on metals and oxides for various electronic applications.

Keywords

References

  1. Bae S, Kim H K, Lee Y B, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, and Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574-578. https://doi.org/10.1038/nnano.2010.132
  2. Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, and Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463-470. https://doi.org/10.1021/nn700375n
  3. Bi H, Sun S, Huang F, Xie X, and Jiang M (2012) Direct growth of few-layer graphene films on $SiO_2$ substrates and their photovoltaic applications. J. Mater. Chem. 22, 411-416. https://doi.org/10.1039/C1JM14778A
  4. Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, and Liu Y (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133, 17548-175451. https://doi.org/10.1021/ja2063633
  5. Dato A, Radmilovic V, Lee Z, Phillips J, and Freklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2012-2016. https://doi.org/10.1021/nl8011566
  6. de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, and Martinez G (2007) Epitaxial graphene. Solid State Commun. 143, 92-100. https://doi.org/10.1016/j.ssc.2007.04.023
  7. Fanton M A, Robinson J A, Puls C, Liu Y, Hollander M J, Weiland B E, Labella M, Trumbull K, Kasarda R, Howsare C, Stitt J, and Snyder D W (2011) Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 5, 8062-8069. https://doi.org/10.1021/nn202643t
  8. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, and Geim A K (2006) Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  9. Geim A K and Novoselov K S (2007) The rise of graphene. Nat. Mater. 6, 183-191. https://doi.org/10.1038/nmat1849
  10. Gopichand N, Sergei R, and Raj S (2010) Remote plasma assisted growth of graphene films. Appl. Phys. Lett. 96, 154101. https://doi.org/10.1063/1.3387812
  11. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, and Wirtz L (2007) Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 7, 238-242. https://doi.org/10.1021/nl061702a
  12. Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, and Iijima S (2011a) Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 091502. https://doi.org/10.1063/1.3561747
  13. Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, and Park C Y (2011b) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 263106. https://doi.org/10.1063/1.3605560
  14. Kuttel O M, Groening O, Emmenegger C, and Schlapbach L (1998) Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113. https://doi.org/10.1063/1.122395
  15. Lee B J, Lee T W, Park S, Yu H Y, Lee J O, Lim S H, and Jeong G H (2011) Low-temperature synthesis of thin graphite sheets using plasma-assisted thermal chemical vapor deposition system. Mater. Lett. 65, 1127-1130. https://doi.org/10.1016/j.matlet.2011.01.045
  16. Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009a) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314. https://doi.org/10.1126/science.1171245
  17. Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, and Ruoff R S (2009b) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359-4363. https://doi.org/10.1021/nl902623y
  18. Li Y M, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D W, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, and Dai H J (2004) Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317-321. https://doi.org/10.1021/nl035097c
  19. Nandamuri G, Roumimov S, and Solanki R (2010) Remote plasma assisted growth of graphene films. Appl. Phys. Lett. 96, 154101. https://doi.org/10.1063/1.3387812
  20. Nang L V and Kim E T (2012) Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition. J. Electrochem. Soc. 159, K93-K96. https://doi.org/10.1149/2.082204jes
  21. Nang L V and Kim E T (2013) Low-temperature synthesis of graphene on Fe2O3 using inductively coupled plasma chemical vapor deposition. Mater. Lett. 92, 437-439. https://doi.org/10.1016/j.matlet.2012.11.031
  22. Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, and Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3087.
  23. Song H J, Son M, Park C, Lim H, Levendorf M P, Tsen A W, Park J, and Choi H C (2012) Large Scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 4, 3050-3054. https://doi.org/10.1039/c2nr30330b
  24. Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, and Hollo-way B C (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42, 2867. https://doi.org/10.1016/j.carbon.2004.06.035
  25. Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, and Manos D M (2007) A mechanism for carbon nanosheet formation. Carbon 45, 2229-2234. https://doi.org/10.1016/j.carbon.2007.06.017