Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Anagnostopoulos, K. P. and Mamanis, G. (2011), The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms, Expert Systems with Applications, 38, 14208-14217.
- Bertsimas, D. and Shioda, R. (2009), Algorithms for cardinality-constrained quadratic optimization, Computational Optimization and Applications, 43, 1-22. https://doi.org/10.1007/s10589-007-9126-9
- Bienstock, D. (1996), Computational study of a family of mixed-integer quadratic programming problems, Mathematical Programming, 74, 121-140.
- Bodnar, T., Parolya, N. and Schmid, W. (2015), A closedform solution of the multi-period portfolio choice problem for a quadratic utility function, Annals of Operations Research, 229(1), 121-158. https://doi.org/10.1007/s10479-015-1802-z
- Brandt, M. and Santa-Clara, P. (2006), Dynamic portfolio selection by augmenting the asset space, The Journal of Finance, 61, 2187-2217. https://doi.org/10.1111/j.1540-6261.2006.01055.x
- Calafiore, G. C. (2008), Multi-period portfolio optimization with linear control policies, Automatica, 44(10), 2463-2473. https://doi.org/10.1016/j.automatica.2008.02.007
- Carlsson, C. and Fuller, R. (2001), On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, 122, 315-326. https://doi.org/10.1016/S0165-0114(00)00043-9
- Carlsson, C., Fuller, R. and Majlender, P. (2002), A possibilistic approach to selecting portfolios with highest utility score, Fuzzy Sets and Systems, 131, 13-21. https://doi.org/10.1016/S0165-0114(01)00251-2
- Cesarone, F., Scozzari, A. and Tardella, F. (2013), A new method for mean-variance portfolio optimization with cardinality constraints, Annals of Operations Research, 205, 213-234. https://doi.org/10.1007/s10479-012-1165-7
- Cui, X. T., Zheng, X. J., Zhu, S. S., and Sun, X. L. (2013), Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems, Journal of Global Optimization, 56, 1409-1423. https://doi.org/10.1007/s10898-012-9842-2
- Clikyurt, U. and Oekici, S. (2007), Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach, European Journal of Operational Research, 179(1), 186-202. https://doi.org/10.1016/j.ejor.2005.02.079
- Deng, G. F., Lin, W. T., and Lo, C. C. (2012), Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Expert Systems with Applications, 39, 4558-4566. https://doi.org/10.1016/j.eswa.2011.09.129
- Dubois, D. and Prade, H. (1988), Possibility Theory, Plenum Perss, New York.
- Fernandez, A. and Gomez, S. (2007), Portfolio selection using neural networks, Computers & Operations Research, 34, 1177-1191. https://doi.org/10.1016/j.cor.2005.06.017
- Gulpinar, N. and Rustem, B. (2007), Worst-case robust decisions for multi-period mean-variance portfolio optimization, European Journal of Operational Research, 183(3), 981-1000. https://doi.org/10.1016/j.ejor.2006.02.046
- Huang, X. (2008), Risk Curve and Fuzzy Portfolio Selection, Computers and Mathematics with Applications, 55, 1102-1112. https://doi.org/10.1016/j.camwa.2007.06.019
- Koksalan, M. and Sakar, C. T. (2014), An interactive approach to stochastic programming-based portfolio optimization, To Appear in Annals of Operations Research.
- Le Thi, H. A., Moeini, M., and Dinh, T. P. (2009), Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA, Computational Management Science, 6, 459-475. https://doi.org/10.1007/s10287-009-0098-3
- Le Thi, H. A. and Moeini, M. (2014), Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm, Journal of Optimization Theory and Applications, 161, 199-224. https://doi.org/10.1007/s10957-012-0197-0
- Li, C. J. and Li, Z. F. (2012), Multi-period portfolio optimization for asset-liability management with bankrupt control, Applied Mathematics and Computation, 218, 11196-11208. https://doi.org/10.1016/j.amc.2012.05.010
- Li, D. and Ng, W. L. (2000), Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10(3), 387-406. https://doi.org/10.1111/1467-9965.00100
- Li, D., Sun, X., and Wang, J. (2006), Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Mathematical Finance, 16, 83-101. https://doi.org/10.1111/j.1467-9965.2006.00262.x
- Li, X., Qin, Z., and Kar, S. (2010), Mean-variance-skewness model for portfolio selection with fuzzy returns, European Journal of operational Research, 202, 239-247. https://doi.org/10.1016/j.ejor.2009.05.003
- Liu, Y. J., Zhang, W. G., and Xu, W. J. (2012), Fuzzy multi-period portfolio selection optimization models using multiple criteria, Automatica, 48, 3042-3053. https://doi.org/10.1016/j.automatica.2012.08.036
- Liu, Y. J., Zhang, W. G. and Zhang, P. (2013), A multiperiod portfolio selection optimization model by using interval analysis, Economic Modelling, 33, 113-119. https://doi.org/10.1016/j.econmod.2013.03.006
- Mansini, R., Ogryczak, W., and Speranza, M. G. (2007), Conditional value at risk and related linear programming models for portfolio optimization, Annals of Operations Research, 152, 227-256. https://doi.org/10.1007/s10479-006-0142-4
- Markowitz, H. M. (1952), Portfolio selection, Journal of Finance, 7, 77-91.
- Murray, W. and Shek, H. (2012), A local relaxation method for the cardinality constrained portfolio optimization problem, Computational Optimization and Applications, 53, 681-709. https://doi.org/10.1007/s10589-012-9471-1
- Ruiz-Torrubiano, R. and Suarez, A. (2010), Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constrains, IEEE Computational Intelligence Magazine, 5, 92-107. https://doi.org/10.1109/MCI.2010.936308
- Shaw, D. X., Liu, M. S., and Kopman, L. (2008), Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optimization Methods & Software, 23, 411-420. https://doi.org/10.1080/10556780701722542
- Sun, X. L., Zheng, X. J., and Li, D. (2013), Recent advances in mathematical programming with semicontinuous variables and cardinality constraint, Journal of the Operations Research Society of China, 1, 55-77. https://doi.org/10.1007/s40305-013-0004-0
- Tanaka, H., Guo, P., and Turksen, I. B. (2000), Portfolio selection based on fuzzy probabilities and possibility distributions, Fuzzy Sets and Systems, 111, 387-397. https://doi.org/10.1016/S0165-0114(98)00041-4
- van Binsbergen, J. H. and Brandt, M. (2007), Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?, Computational Economics, 29, 355-367. https://doi.org/10.1007/s10614-006-9073-z
- Woodside-Oriakhi, M., Lucas, C., and Beasley, J. E. (2011), Heuristic algorithms for the cardinality constrained efficient frontier, European Journal of Operational Research, 213, 538-550. https://doi.org/10.1016/j.ejor.2011.03.030
- Wu, H. L. and Li, Z. F. (2012), Multi-period meanvariance portfolio selection with regime switching and a stochastic cash flow, Insurance: Mathematics and Economics, 50, 371-384. https://doi.org/10.1016/j.insmatheco.2012.01.003
- Yan, W. and Li, S. R. (2009), A class of multi-period semi-variance portfolio selection with a four-factor futures price model, Journal of Applied Mathematics and Computing, 29, 19-34. https://doi.org/10.1007/s12190-008-0086-8
- Yan, W., Miao, R., and Li, S. R. (2007), Multi-period semi-variance portfolio selection: Model and numerical solution, Applied Mathematics and Computation, 194, 128-134. https://doi.org/10.1016/j.amc.2007.04.036
- Yu, M., Takahashi, S., Inoue, H., and Wang, S. Y. (2010), Dynamic portfolio optimization with risk control for absolute deviation model, European Journal of Operational Research, 201(2), 349-364. https://doi.org/10.1016/j.ejor.2009.03.009
- Yu, M. and Wang, S. Y. (2012), Dynamic optimal portfolio with maximum absolute deviation model, Journal of Global Optimization, 53, 363-380. https://doi.org/10.1007/s10898-012-9887-2
- Zhang, W. G. and Nie, Z. K. (2004), On admissible efficient portfolio selection problem, Applied Mathematics and Computation, 159, 357-371. https://doi.org/10.1016/j.amc.2003.10.019
- Zhang, W. G., Liu, W. A., and Wang, Y. L. (2006), On admissible efficient portfolio selection problem: Models and algorithms, Applied Mathematics and Computation, 176, 208-218. https://doi.org/10.1016/j.amc.2005.09.085
- Zhang, W. G. and Wang, Y. L. (2008), An analytic derivation of admissible efficient frontier with borrowing, European Journal of Operational Research, 184, 229-243. https://doi.org/10.1016/j.ejor.2006.09.058
- Zhang, W. G., Liu, Y. J., and Xu, W. J. (2012), A possibilistic mean-semivariance-entropy model for multiperiod portfolio selection with transaction costs, European Journal of Operational Research, 222, 41-349.
- Zhang, W. G., Liu, Y. J., and Xu, W. J. (2014), A new fuzzy programming approach for multi-period portfolio Optimization with return demand and risk control, Fuzzy Sets and Systems, 246, 107-126. https://doi.org/10.1016/j.fss.2013.09.002
- Zhang, P. and Zhang, W. G. (2014), Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints, Fuzzy Sets and Systems, 255, 74-91. https://doi.org/10.1016/j.fss.2014.07.018
- Zhu, S. S., Li, D., and Wang, S. Y. (2004), Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation, IEEE Transactions on Automatic Control, 49(3), 447-457. https://doi.org/10.1109/TAC.2004.824474