DOI QR코드

DOI QR Code

Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services

  • Kim, Jang K. (Department of Marine Science, School of Natural Sciences, Incheon National University) ;
  • Yarish, Charles (Department of Ecology & Evolutionary Biology, University of Connecticut) ;
  • Hwang, Eun Kyoung (Seaweed Research Center, National Institute of Fisheries Science) ;
  • Park, Miseon (Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Youngdae (Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • Received : 2016.12.13
  • Accepted : 2017.03.03
  • Published : 2017.03.15

Abstract

Seaweed aquaculture technologies have developed dramatically over the past 70 years mostly in Asia and more recently in Americas and Europe. However, there are still many challenges to overcome with respect to the science and to social acceptability. The challenges include the development of strains with thermo-tolerance, disease resistance, fast growth, high concentration of desired molecules, the reduction of fouling organisms and the development of more robust and cost efficient farm systems that can withstand storm events in offshore environments. It is also important to note that seaweed aquaculture provides ecosystem services, which improve conditions of the coastal waters for the benefit of other living organisms and the environment. The ecosystem services role of seaweed aquaculture and its economic value will also be quantitatively estimated in this review.

Keywords

References

  1. Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I. & Yarish, C. 2011a. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199. https://doi.org/10.1016/j.jembe.2011.06.034
  2. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011b. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  3. Abreu, M. H., Varela, D. A., Henriquez, L., Villarroel, A., Yarish, C., Sousa-Pinto, I. & Buschmann, A. H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture 293:211-220. https://doi.org/10.1016/j.aquaculture.2009.03.043
  4. Alamsjah, M. A. 2010. Producing new variety of Gracilaria sp. through cross breeding. Res. J. Fish. Hydrobiol. 5:159- 167.
  5. Asare, S. O. & Harlin, M. M. 1983. Seasonal fluctuations in tissue nitrogen for five species of perennial macroalgae in Rhode Island Sound. J. Phycol. 19:254-257. https://doi.org/10.1111/j.0022-3646.1983.00254.x
  6. Ask, E. I. & Azanza, R. V. 2002. Advances in cultivation technology of commercial eucheumatoid species: a re-view with suggestions for future research. Aquaculture 206:257-277. https://doi.org/10.1016/S0044-8486(01)00724-4
  7. Augyte, S., Yarish, C., Redmond, S. & Kim, J. K. Cultivation of a morphologically distinct strain of the sugar kelp, Saccharina latissima forma angustissima, from coastal Maine, USA, with implications for ecosystem services. J. Appl. Phycol. (in press).
  8. Barbier, E. B. 2013. Valuing ecosystem services for coastal wetland protection and restoration: progress and challenges. Resources 2:213-230. https://doi.org/10.3390/resources2030213
  9. Barrington, K., Chopin, T. & Robinson, S. 2009. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In Soto, D. (Ed.) Integrated Mariculture: A Global Eeview. FAO Fisheries and Aquaculture Technical Paper, No. 529. Food and Agriculture Organization of the United Nations, Rome, pp. 7-46.
  10. Bjerregaard, R., Valderrama, D., Radulovich, R., Diana, J., Capron, M., Mckinnie, C. A., Cedric, M., Hopkins, K., Yarish, C., Goudey, C. & Forster, J. 2016. Seaweed aquaculture for food security, income generation and environmental health in Tropical Developing Countries. Report #107147. Available from: http://documents.worldbank. org/curated/en/947831469090666344/Seaweed-aquaculture- for-food-security-income-generation-and-environmental- health-in-Tropical-Developing-Countries; jsessionid=4sLY8b149Hwa-8ramT5do35G. Accessed Jan 23, 2017.
  11. Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
  12. Broch, O. J., Ellingsen, I. H., Forbord, S., Wang, X., Volent, Z., Alver, M. O., Handå, A., Andresen, K., Slagstad, D., Reitan, K. I., Olsen, Y. & Skjermo, J. 2013. Modelling the cultivation and bioremediation potential of the kelp Saccharina latissima in close proximity to an exposed salmon farm in Norway. Aquac. Environ. Interact. 4:186-206.
  13. Buck, B. H. & Buchholz, C. M. 2004. The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol. 16:355-368. https://doi.org/10.1023/B:JAPH.0000047947.96231.ea
  14. Buschmann, A. H., Hernandez-Gonzalez, M. C. & Varela, D. A. 2008a. Seaweed future cultivation in Chile: perspectives and challenges. Int. J. Environ. Pollut. 33:432-456. https://doi.org/10.1504/IJEP.2008.020571
  15. Buschmann, A. H., Prescott, S., Potin, P., Faugeron, S., Vasquez, J. A., Camus, C., Infante, J., Hernandez-Gonzalez, M. C., Gutierrez, A. & Varela, D. A. 2014. The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera, in Chile. Adv. Bot. Res. 71:161-188.
  16. Buschmann, A. H., Varela, D. A., Hernandez-Gonzalez, M. C. & Huovinen, P. 2008b. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. J. Appl. Phycol. 20:571-577. https://doi.org/10.1007/s10811-007-9297-x
  17. Caines, S., Manriquez-Hernandez, J. A., Duston, J., Corey, P. & Garbary, D. J. 2014. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent. J. Appl. Phycol. 26:2173-2181. https://doi.org/10.1007/s10811-014-0247-0
  18. Camus, C., Ballerino, P., Delgado, R., Olivera-Nappa, a., Leyton, C. & Buschmann, A. H. 2016. Scaling up bioethanol production from the farmed brown macroalgae Macrocystis pyrifera in Chile. Biofuels Bioprod. Biorefin. 10:673-685. https://doi.org/10.1002/bbb.1708
  19. Chen, T. T., Lin, C. M., Chen, M. J., Lo, J. H., Chiou, P. P., Gong, H. Y., Wu, J. L., Chen, M. H. C. & Yarish, C. 2015. Principles and application of transgenic technology in marine organisms. In Kim, S. -K. (Ed.) Handbook of Marine Biotechnology. Springer, Berlin, pp. 387-412.
  20. Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H. & Fang, J. 2008. Multitrophic integration for sustainable marine aquaculture. In Jorgensen, S. E. & Fath, B. D. (Eds.) Encyclopedia of Ecolog. Vol. 3. Ecological Engineering. Elsevier, Oxford, pp. 2463-2475.
  21. Chopin, T., Yarish, C., Wilkes, R., Belyea, E., Lu, S. & Mathieson, A. 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 11:463-472. https://doi.org/10.1023/A:1008114112852
  22. Chung, I. K, Kang, Y. H., Yarish, C., Kraemer, G. P. & Lee, J. A. 2002. Application of seaweed cultivation to the bioremediation of nutrient-rich effluent. Algae 17:187-194. https://doi.org/10.4490/ALGAE.2002.17.3.187
  23. Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45. https://doi.org/10.4490/algae.2014.29.1.035
  24. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Bioremediation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal. J. Appl. Phycol. 24:441-448. https://doi.org/10.1007/s10811-011-9734-8
  25. Correa, T., Gutierrez, A., Flores, R., Buschmann, A. H., Cornejo, P. & Bucarey, C. 2016. Production and economic assessment of giant kelp Macrocystis pyrifera cultivation for abalone feed in the south of Chile. Aquac. Res. 47:698-707. https://doi.org/10.1111/are.12529
  26. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S. & Turner, R. K. 2014. Changes in the global value of ecosystem services. Glob. Environ. Change 26:152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
  27. Cottier-Cook, E. J., Nagabhatla, N., Badis, Y., Campbell, M. L., Chopin, T., Dai, W., Fang, J., He, P., Hewitt, C. L., Kim, G. H., Huo, Y., Jiang, Z., Kema, G., Li, X., Liu, F., Liu, H., Liu, Y., Lu, Q., Luo, Q., Mao, Y., Msuya, F. E., Rebours, C., Shen, H., Stentiford, G. D., Yarish, C., Wu, H., Yang, X., Zhang, J., Zhou, Y. & Gachon, C. M. M. 2016. Safeguarding the future of the global seaweed aquaculture industry. United Nation University (INWEH) and Scottish Association for Marine Science Policy Brief, South Hamilton, ON, 12 pp.
  28. Dean, P. R. & Hurd, C. L. 2007. Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand. J. Phycol. 43:1138-1148. https://doi.org/10.1111/j.1529-8817.2007.00416.x
  29. Dillehay, T. D., Ramirez, C., Pino, M., Collins, M. B., Rossen, J. & Pino-Navarro, J. D. 2008. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:784-786. https://doi.org/10.1126/science.1156533
  30. FAO (Food and Agriculture Organization of the United Nations). 2015. World fertilizer trends and outlook to 2019. Available from: http://www.fao.org/3/a-i5627e.pdf. Accessed Jan 23, 2017.
  31. FAO (Food and Agriculture Organization of the United Nations). 2017. The state of world fisheries and aquaculture. Available from: http://www.fao.org/fishery/en. Accessed Jan 23, 2017.
  32. Fowler-Walker, M. J., Wernberg, T. & Connell, S. D. 2006. Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits? Mar. Biol. 148:755-767. https://doi.org/10.1007/s00227-005-0125-z
  33. Gerard, V. A. 1997. The role of nitrogen nutrition in high-temperature tolerance of the kelp, Laminaria saccharina (Chromophyta). J. Phycol. 33:800-810. https://doi.org/10.1111/j.0022-3646.1997.00800.x
  34. Getchis, T. S., Rose, C. M., Carey, D., Kelly, S., Bellantuono, K. & Francis, P. 2008. A guide to marine aquaculture permitting in Connecticut. Connecticut Sea Grant College Program, Groton, CT, 140 pp.
  35. Gevaert, F., Davoult, D., Creach, A., Kling, R., Janquin, M. -A., Seuront, L. & Lemoine, Y. 2001. Carbon and nitrogen content of Laminaria saccharina in the eastern English Channel: biometrics and seasonal variations. J. Mar. Biol. Assoc. U. K. 81:727-734. https://doi.org/10.1017/S0025315401004532
  36. Gorman, L., Kraemer, G. P., Yarish, C., Boo, S. M. & Kim, J. K. 2017. The effects of temperature on the growth and nitrogen content of Gracilaria vermiculophylla and Gracilaria tikvahiae from LIS, USA. Algae 32:57-66. https://doi.org/10.4490/algae.2017.32.1.30
  37. Guillemin, M. L., Faugeron, S., Destombe, C., Viard, F., Correa, J. A. & Valero, M. 2008. Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution 62:1500-1519. https://doi.org/10.1111/j.1558-5646.2008.00373.x
  38. Guiry, M. D. & Guiry, G. M. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Jun 21, 2016.
  39. Hafting, J. T., Craigie, J. S., Stengel, D. B., Loureiro, R. R., Buschmann, A. H., Yarish, C., Edwards, M. D. & Critchley, A. T. 2015. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 51:821-837. https://doi.org/10.1111/jpy.12326
  40. Han, T., Kong, J. A., Kang, H. G., Kim, S. J., Jin, G. S., Choi, H. & Brown, M. T. 2011. Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure. Ecotoxicology 20:2056-2068. https://doi.org/10.1007/s10646-011-0748-4
  41. Hanisak, M. D. 1987. Cultivation of Gracilaria and other macroalgae in Florida for energy production. In Bird, K. T. & Benson, P. H. (Eds.) Seaweed Cultivation for Renewable Resources. Elsevier, New York, pp. 191-218.
  42. Hanisak, M. D. & Ryther, J. H. 1984. Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia 116/117:295-298. https://doi.org/10.1007/BF00027688
  43. Hayashi, L., Hurtado, A. Q., Msuya, F. E., Bleicher-Lhonneur, G. & Critchley, A. T. 2010. A review of Kappaphycus farming: prospects and constraints. In Israel, A., Einav, R. & Seckbach, J. (Eds.) Seaweeds and Their Role in Globally Changing Environments: Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, New York, pp. 251- 283.
  44. He, P., Xu, S., Zhang, H., Wen, S., Dai, Y., Lin, S. & Yarish, C. 2008. Bioremediation efficiency in removal of dissolved nutrients by the red seaweed, Porphyra yezoensis, cultivated in open sea. Water Res. 42:1281-1289. https://doi.org/10.1016/j.watres.2007.09.023
  45. He, P. & Yarish, C. 2006. The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture 257:373-381. https://doi.org/10.1016/j.aquaculture.2006.03.017
  46. Hou, J. & Jin, Y. 2005. The healing power of Chinese herbs and medicinal recipes. Haworth Press, Inc., New York, 662 pp.
  47. Hu, C., Li, D., Chen, C., Ge, J., Muller-Karger, F. E., Liu, J., Yu, F. & He, M. -X. 2010. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. 115:C05017.
  48. Huo, Y., Han, H., Hua, L., Wei, Z., Yu, K., Shi, H., Kim, J. K., Yarish, C. & He, P. 2016. Tracing the origin of green macroalgal blooms based on the large scale spatio-temporal distribution of Ulva microscopic propagules and settled mature Ulva vegetative thalli in coastal regions of the Yellow Sea, China. Harmful Algae 59:91-99. https://doi.org/10.1016/j.hal.2016.09.005
  49. Hurtado, A. Q., Critchley, A. T., Trespoey, A. & Bleicher Lhonneur, G. 2006. Occurrence of Polysiphonia epiphytes in Kappaphycus farms at Calaguas Is., Camarines Norte, Phillippines. J. Appl. Phycol. 18:301-306. https://doi.org/10.1007/s10811-006-9032-z
  50. Hwang, E. K., Cho, Y. C. & Sohn, C. H. 1998. Reuse of holdfasts in Hizikia cultivation. J. Korean Fish. Soc. 32:112-116.
  51. Hwang, E. K., Gong, Y. G., Hwang, I. -K., Park, E. -J. & Park, C. S. 2013. Cultivation of the two perennial brown algae Ecklonia cava and E. stolonifera for abalone feeds in Korea. J. Appl. Phycol. 25:825-829. https://doi.org/10.1007/s10811-012-9941-y
  52. Hwang, E. K., Gong, Y. G. & Park, C. S. 2012. Cultivation of a hybrid of free-living gametophytes between Undariopsis peterseniana and Undaria pinnatifida: morphological aspects and cultivation period. J. Appl. Phycol. 24:401-408. https://doi.org/10.1007/s10811-011-9727-7
  53. Hwang, E. K., Ha, D. S., Baek, J. M., Wee, M. Y. & Park, C. S. 2006a. Effects of pH and salinity on the cultivated brown alga Sargassum fulvellum and associated animals. Algae 21:317-321. https://doi.org/10.4490/ALGAE.2006.21.3.317
  54. Hwang, E. K., Park, C. S. & Baek, J. M. 2006b. Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C. Agardh: developing a new species for seaweed cultivation in Korea. J. Appl. Phycol. 18:251-257. https://doi.org/10.1007/s10811-006-9021-2
  55. Johnson, R. B., Kim, J. K., Armbruster, L. C. & Yarish, C. 2014. Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: a preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds. Algae 29:227-235. https://doi.org/10.4490/algae.2014.29.3.227
  56. Kawashima, Y. & Tokuda, H. 1993. Regeneration from the callus of Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyta). Hydrobiologia 260/261:385-389. https://doi.org/10.1007/BF00049045
  57. Kerrison, P. D., Stanley, M. S., Edwards, M. D., Black, K. D. & Hughes, A. D. 2015. The cultivation of European kelp for bioenergy: site and species selection. Biomass Bioenergy 80:229-242. https://doi.org/10.1016/j.biombioe.2015.04.035
  58. Kim, G. H., Moon, K. -H., Kim, J. -Y., Shim, J. & Klochkova, T. A. 2014a. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249-265. https://doi.org/10.4490/algae.2014.29.4.249
  59. Kim, J. K., Duston, J., Corey, P. & Garbary, D. J. 2013a. Marine finfish effluent bioremediation: effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture 414-415:210-216. https://doi.org/10.1016/j.aquaculture.2013.08.008
  60. Kim, J. K., Kottuparambil, S., Moh, S. H., Lee, T. K., Kim, Y. -J., Rhee, J. -S., Choi, E. -M., Kim, B. H., Yu, Y. J., Yarish, C. & Han, T. 2015a. Potential applications of nuisance microalgal blooms. J. Appl. Phycol. 27:1223-1234. https://doi.org/10.1007/s10811-014-0410-7
  61. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. https://doi.org/10.1007/s10811-006-9150-7
  62. Kim, J. K., Kraemer, G. P. & Yarish, C. 2013b. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. PLos ONE 8:e69961. https://doi.org/10.1371/journal.pone.0069961
  63. Kim, J. K., Kraemer, G. P. & Yarish, C. 2014b. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
  64. Kim, J. K., Kraemer, G. P. & Yarish, C. 2015b. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction. Mar. Ecol. Prog. Ser. 531:155-166. https://doi.org/10.3354/meps11331
  65. Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. 2015c. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436:52-57. https://doi.org/10.1016/j.aquaculture.2014.10.037
  66. Kim, J. K. & Yarish, C. 2014. Development of a sustainable land-based Gracilaria cultivation system. Algae 29:217- 225. https://doi.org/10.4490/algae.2014.29.3.217
  67. Kim, J. K., Yarish, C. & Pereira, R. 2016. Tolerances to hypoosmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta). Phycologia 55:257-264. https://doi.org/10.2216/15-90.1
  68. Koehl, M. A. R., Silk, W. K., Liang, H. & Mahadevan, L. 2008. How kelp produce blade shapes suited to different flow regimes: a new wrinkle. Integr. Comp. Biol. 48:834-851. https://doi.org/10.1093/icb/icn069
  69. Kraemer, G. P., Kim, J. K. & Yarish, C. 2014. Seaweed aquaculture: bioextraction of nutrients to reduce eutrophication. Association of Massachusetts Wetland Scientists Newsletter 89:16-17.
  70. Langan, R. & Horton, F. 2005. Design, operation and economics of submerged longline mussel culture in the open ocean. Bull. Aquac. Assoc. Can. 103:11-20.
  71. Largo, D. B., Fukami, K. & Nishijima, T. 1995. Occasional pathogenic bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J. Appl. Phycol. 7:545-554. https://doi.org/10.1007/BF00003941
  72. Levine, I. A. & Sahoo, D. 2010. Porphyra: harvesting gold from the sea. I.K. International Publihing House Pvt. Ltd., New Delhi, 92 pp.
  73. Li, X., Cong, Y., Yang, G., Shi, Y., Qu, S., Li, Z., Wang, G., Zhang, Z., Luo, S., Dai, H., Xie, J., Jiang, G., Liu, J. & Wang, T. 2007. Trait evaluation and trial cultivation of Dongfang No. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales, Phaeophyta) and a female one of L. japonica. J. Appl. Phycol. 19:139-151. https://doi.org/10.1007/s10811-006-9120-0
  74. Li, X., Zhang, Z., Qu, S., Liang, G., Sun, J., Zhao, N., Cui, C., Cao, Z., Li, Y., Pan, J., Yu, S., Wang, Q., Li, X., Luo, S., Song, S., Guo, L. & Yang, G. 2016. Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes. Sci. Rep. 6:21255. https://doi.org/10.1038/srep21255
  75. Lindell, S., Green-Beach, E., Bailey, D., Beals, M., Kim, J. K. & Yarish, C. 2015. Multi-cropping seaweed Gracilaria tikvahiae with oysters for nutrient bioextraction and sea vegetables in Waquoit Bay, MA. In National Shellfisheries Association 107th Annual Meeting, National Shellfisheries Association, Monterey, CA.
  76. Liu, D., Keesing, J. K., Xing, Q. & Shi, P. 2009. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 58:888-895. https://doi.org/10.1016/j.marpolbul.2009.01.013
  77. Marinho, G. S., Holdt, S. L., Birkeland, M. J. & Angelidaki, I. 2015. Commercial cultivation and bioremediation potential of sugar kelp, Saccharina latissima, in Danish waters. J. Appl. Phycol. 27:1963-1973. https://doi.org/10.1007/s10811-014-0519-8
  78. Mathieson, A. C., Hehre, E. J., Dawes, C. J. & Neefus, C. D. 2008. An historical comparison of seaweed populations from Casco Bay, Maine. Rhodora 110:1-102. https://doi.org/10.3119/06-23.1
  79. McVey, J. P., Stickney, R. R., Yarish, C. & Chopin, T. 2002. Aquatic polyculture balanced ecosystem management: new paradigms for seafood production. In Stickney, R. R. & McVey, J. P. (Eds.) Responsible Marine Aquaculture. CABI Publishing, Wallingford, pp. 91-104.
  80. Miura, A. 1984. A new variety and a new form of Porphyra (Bangiales, Rhodophyta) from Japan: Porphyra tenera Kjellman var. tamatsuensis Miura, var. nov. and P. yezoensis Ueda form. narawaensis Miura, form. nov. J. Tokyo Univ. Fish. 71:1-37.
  81. Mumford, T. F. & Miura, A. 1988. Porphyra as food: cultivation and economics. In Lembi, C. A. & Waaland, J. R. (Eds.) Algae and Human Affairs. Cambridge University Press, London, pp. 87-117.
  82. NASA. 2017. NASA, NOAA data show 2016 warmest year on record globally. Available from: https://www.nasa.gov/ press-release/nasa-noaa-data-show-2016-warmestyear- on-record-globally. Accessed Jan 12, 2017.
  83. Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shpigel, M. & Yarish, C. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern aquaculture. Aquaculture 231:361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015
  84. Neori, A., Troell, M., Chopin, T., Yarish, C., Critchley, A. & Buschmann, A. H. 2007. The need for a balanced ecosystem approach to blue revolution aquaculture. Environment 49:36-43.
  85. Niwa, K., Iida, S., Kato, A., Kawai, H., Kikuchi, N., Kobiyama, A. & Aruga, Y. 2009. Genetic diversity and introgression in two cultivated species (Porphyra yezoensis and Porphyra tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J. Phycol. 45:493-502. https://doi.org/10.1111/j.1529-8817.2009.00661.x
  86. Oliveira, E. C., Alveal, K. & Anderson, R. J. 2000. Mariculture of the agar-producing Gracilarioid red algae. Rev. Fish. Sci. 8:345-377. https://doi.org/10.1080/10408340308951116
  87. Park, J., Jin, G. -S., Hwang, M. S., Brown, M. T. & Han, T. 2016. Toxicity tests using the kelp Undaria pinnatifida for heavy metal risk assessment. Toxicol. Environ. Health. Sci. 8:86-95. https://doi.org/10.1007/s13530-016-0265-1
  88. Park, J., Kim, J. K., Kong, J. -A., Depuydt, S., Brown, M. T. & Han, T. 2017. Implications of rising temperatures for gametophyte performance of two kelp species from Arctic waters. Bot. Mar. 60:39-48.
  89. Patwary, M. U. & van der Meer, J. P. 1992. Genetic and breeding of cultivated seaweeds. Algae 7:281-318.
  90. Peng, Y., Xie, E., Zheng, K., Fredimoses, M., Yang, X., Zhou, X., Wang, Y., Yang, B., Lin, X., Liu, J. & Liu, Y. 2013. Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar. Drugs 11:20-32.
  91. Pereira, R. & Yarish, C. 2008. Mass production of marine macroalgae. In Jorgensen, S. E. & Fath, B. D. (Eds.) Encyclopedia of Ecology. Vol. 3. Ecological Engineering. Elsevier, Oxford, pp. 2236-2247.
  92. Pereira, R. & Yarish, C. 2010. The role of Porphyra in sustainable culture systems: physiology and applications. In Israel, A. & Einav, R. (Eds.) Role of Seaweeds in a Globally Changing Environment. Springer Publishers, New York, pp. 339-354.
  93. Pereira, R., Yarish, C. & Critchley, A. T. 2013. Seaweed aquaculture for human foods in land based and IMTA systems. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer, New York, pp. 9109-9128.
  94. Qi, Z., Liu, H., Li, B., Mao, Y., Jiang, Z., Zhang, J. & Fang, J. 2010. Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300:189-193. https://doi.org/10.1016/j.aquaculture.2010.01.019
  95. Raikar, S. V., Ima, M. & Fujita, Y. 2001. Effects of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J. Mar. Sci. 30:98-104.
  96. Rawson, M. V. Jr., Chen, C., Ji, R., Zhu, M., Wang, D., Wang, L., Yarish, C., Sullivan, J. B., Chopin, T. & Carmona, R. 2002. Understanding the interaction of extractive and fed aquaculture using ecosystem modeling. In Stickney, R. R. & McVey, J. P. (Eds.) Responsible Marine Aquaculture. CABI Publishing, Wallingford, pp. 263-296.
  97. Redmond, S., Green, L., Yarish, C., Kim, J. & Neefus, C. 2014a. New England seaweed culture handbook: nursery systems. Connecticut Sea Grant CTSG-14-01. Available from: http://seagrant.uconn.edu/publications/aquaculture/ handbook.pdf. Accessed Jan 23, 2017.
  98. Redmond, S., Kim, J. K., Yarish, C., Pietrak, M. & Bricknell, I. 2014b. Culture of Sargassum in Korea: techniques and potential for culture in the U.S. Orono, ME: Maine Sea Grant College Program. Available from: http://seagrant. umaine.edu/extension/korea-aquaculture. Accessed Jan 23, 2017.
  99. Rensel, J., Bright, K., King, G. & Siegrist, Z. 2011. Integrated fish-shellfish mariculture in Puget Sound. NOAA Final report. 3-31-2011. NA08OAR4170860. NOAA National Marine Aquaculture Initiative, Rensel Associates, Arlington, WA, 82 pp.
  100. Robertson-Andersson, D. V., Wilson, D. T., Bolton, J. J., Anderson, R. J. & Maneveldt, G. W. 2009. Rapid assessment of tissue nitrogen in cultivated Gracilaria gracilis (Rhodophyta) and Ulva lactuca (Chlorophyta). Afr. J. Aquat. Sci. 34:169-172. https://doi.org/10.2989/AJAS.2009.34.2.7.894
  101. Robinson, N., Winberg, P. & Kirkendale, L. 2013. Genetic improvement of macroalgae: status to date and needs for the future. J. Appl. Phycol. 25:703-716. https://doi.org/10.1007/s10811-012-9950-x
  102. Rose, J. M., Bricker, S. B., Deonarine, S., Ferreira, J. G., Getchis, T., Grant, J., Kim, J. K., Krumholz, J. S., Kraemer, G. P., Stephenson, K., Wikfors, G. H. & Yarish, C. 2015. Nutrient bioextraction. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer, New York, pp. 1-33.
  103. Sahoo, D. & Ohno, M. 2003. Culture of Kappaphycus alvarezii in deep water and nitrogen enriched medium. Bull. Mar. Sci. Fish. 22:89-96.
  104. Sahoo, D. & Yarish, C. 2005. Mariculture of seaweeds. In Andersen, R. A. (Ed.) Phycological Methods: Algal Culturing Techniques. Academic Press, New York, pp. 219-237.
  105. Schaffelke, B. 2001. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia. Coral Reefs 19:310-317. https://doi.org/10.1007/s003380000128
  106. Schaffelke, B. & Klumpp, D. W. 1998. Nutrient-limited growth of the coral reef macroalga Sargassum baccularia and experimental growth enhancement by nutrient addition in continuous flow culture. Mar. Ecol. Prog. Ser. 164:199- 211. https://doi.org/10.3354/meps164199
  107. Shin, J. -A. 1999. Crossing between Porphyra yezoensis and P. tenera. Algae 14:73-77.
  108. Shin, J. -A. 2003. Inheritance mode of some characters of Porphyra yezoensis (Bangiales, Rhodophyta) II. Yield, photosynthetic pigment content, red rot disease-resistance, color, luster and volatile sulfur compounds concentration. Algae 18:83-88. https://doi.org/10.4490/ALGAE.2003.18.1.083
  109. SINTEF. 2014. A new Norwegian bioeconomy based on cultivation and processing of seaweeds: opportunities and research and development needs. SINTEF Fisheries and Aquaculture, Norway. Available from: http://www. innovasjonnorge.no/contentassets/95273c625e1c4b4caf8b4d0a36020dc0/2014-sintef---seaweed-in-thebioeconomy. pdf. Accessed Jan 23, 2017.
  110. Sohn, C. H. 1998. The seaweed resources of Korea. In Critchley, A. T. & Ohno, M. (Eds.) Seaweed Resources of the World. Japan International Cooperation Agency, Yokosuka, pp. 15-33.
  111. Stekoll, M. S. & Peeples, T. N. 2016. Marine plant aquaculture in southeast Alaska. Annual Meeting of the Phycological Society of America. pp. 38-39. Available from: http://static1.squarespace.com/static/543d47aee4b0f40897fde 705/t/5790efa11b631be8a7a1f64a/1469116323834/ Full+Final+Program.pdf. Accessed Jan 23, 2017.
  112. Vairappan, C. A., Chung, C. S., Hurtado, A. Q., Soya, F. E., Lhonneur, G. B. & Critchley, A. 2009. Distribution and symtoms of epiphytic infection in major carrageenophyte- producing farms. In Nineteenth International Seaweed Symposium, Vol. 2, Springer, Amsterdam, pp. 27-33.
  113. Valderrama, D., Cai, J., Hishamunda, N., Ridler, N., Neish, I. C., Hurtado, A. Q., Msuya, F. E., Krishnan, M., Narayanakumar, R., Kronen, M., Robledo, D., Gasca-Leyva, E. & Fraga, J. 2015. The economics of Kappaphycus seaweed cultivation in developing countries: a comparative analysis of farming systems. Aquac. Econ. Manag. 19:251-277. https://doi.org/10.1080/13657305.2015.1024348
  114. Valero, M., Guillemin, M. -L., Destombe, C., Jacquemin, B., Gachon, C. M. M., Badis, Y., Buschmann, A. H., Camus, C. & Faugeron, S. 2017. Perspectives on domestication research for sustainable seaweed aquaculture. Perspect. Phycol. Advanced online publication. https://doi. org/10.1127/pip/2017/0066.
  115. Weinberger, F., Buchholz, B., Karez, R. & Wahl, M. 2008. The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat. Biol. 3:251-264. https://doi.org/10.3354/ab00083
  116. Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchabnt, S. S, Helliwell, K. E., Smith, A. G., Camire, M. E. & Brawley, S. H. 2016. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. Advanced online publication. https://doi/org/10.1007/ s10811-016-0974-5.
  117. Wu, H., Huo, Y., Han, F., Liu, Y. & He, P. 2015. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Mar. Pollut. Bull. 91:272-279. https://doi.org/10.1016/j.marpolbul.2014.11.032
  118. Wu, H., Kim, J. K., Huo, Y., Zhang, J. & He, P. 2017. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China's radial sandbanks. Aquat. Bot. 137:72-79. https://doi.org/10.1016/j.aquabot.2016.11.011
  119. Xie, E. Y., Liu, D. C., Jia, C., Chen, X. L. & Yang, B. 2013. Artificial seed production and cultivation of the edible brown alga Sargassum naozhouense Tseng et Lu. J. Appl. Phycol. 25:513-522. https://doi.org/10.1007/s10811-012-9885-2
  120. Yokoya, N. S., Hirotaka, K., Obika, H. & Litamura, T. 1999. Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398/399:339-347. https://doi.org/10.1023/A:1017072508583
  121. Zhang, J., Huo, Y., Wu, H., Yu, K., Kim, J. K., Yarish, C., Qin, Y., Liu, C., Xu, R. & He, P. 2014. The origin of the Ulva macroalgal blooms in the Yellow Sea in 2013. Mar. Pollut. Bull. 89:276-283. https://doi.org/10.1016/j.marpolbul.2014.09.049
  122. Zhang, J., Kim, J. K., Yarish, C. & He, P. 2016. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Pollut. Bull. 104:101-106. https://doi.org/10.1016/j.marpolbul.2016.01.056

Cited by

  1. Seaweed production: overview of the global state of exploitation, farming and emerging research activity vol.52, pp.4, 2017, https://doi.org/10.1080/09670262.2017.1365175
  2. (Laminariales, Phaeophyceae), in eastern Maine, USA vol.57, pp.1, 2018, https://doi.org/10.2216/17-72.1
  3. 56. Kelps: the key to sustainable harvest of marine biodiversity pp.2160-0651, 2018, https://doi.org/10.1080/14888386.2018.1438920
  4. Isolation, Morphological Characteristics and Proteomic Profile Analysis of Thermo-tolerant Pyropia yezoensis Mutant in Response to High-temperature Stress pp.2005-7172, 2018, https://doi.org/10.1007/s12601-018-0060-9
  5. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina japonica (Laminariales, Phaeophyta) vol.53, pp.3, 2018, https://doi.org/10.1007/s12601-018-0014-2
  6. Comparison of ethanol production from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in aquaculture system in Thailand pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1536-9
  7. Porphyra umbilicalis in applied and basic research: reproductive phenology, development, seed stock culture, and a field trial for aquaculture pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1538-7
  8. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1552-9
  9. Comparison of the cultivation performance between Korean (Sugwawon No. 301) and Chinese strains (Huangguan No. 1) of kelp Saccharina japonica in an aquaculture farm in Korea vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.2.4
  10. Aboriginal uses of seaweeds in temperate Australia: an archival assessment vol.30, pp.3, 2018, https://doi.org/10.1007/s10811-017-1384-z
  11. The seaweed resources of Chile over the period 2006–2016: moving from gatherers to cultivators vol.0, pp.0, 2019, https://doi.org/10.1515/bot-2018-0030
  12. Strain DSM 6423 vol.85, pp.5, 2018, https://doi.org/10.1128/AEM.02656-18
  13. Treatment of Wastewater Using Seaweed: A Review vol.15, pp.12, 2018, https://doi.org/10.3390/ijerph15122851
  14. Growth, artificial seedling raising and cultivation of Sargassum confusum (Fucales, Phaeophyceae) inhabiting the coast of Shandong Peninsula, China pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1727-4
  15. Valuation of Ecosystem Services to promote sustainable aquaculture practices pp.17535123, 2020, https://doi.org/10.1111/raq.12324
  16. affected by ocean acidification and warming vol.50, pp.3, 2019, https://doi.org/10.1111/are.13957
  17. Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions vol.33, pp.4, 2017, https://doi.org/10.4490/algae.2018.33.11.13
  18. The Environmental Risks Associated With the Development of Seaweed Farming in Europe - Prioritizing Key Knowledge Gaps vol.6, pp.None, 2017, https://doi.org/10.3389/fmars.2019.00107
  19. Health Benefits and Pharmacological Effects of Porphyra Species vol.74, pp.1, 2017, https://doi.org/10.1007/s11130-018-0707-9
  20. Individuality in seaweeds and why we need to care vol.55, pp.2, 2017, https://doi.org/10.1111/jpy.12845
  21. Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming vol.142, pp.None, 2019, https://doi.org/10.1016/j.marpolbul.2019.03.063
  22. A Social-Ecological System Framework for Marine Aquaculture Research vol.11, pp.9, 2017, https://doi.org/10.3390/su11092522
  23. Anti-melanogenesis activity of Ecklonia cava extract cultured in tanks with magma seawater of Jeju Island vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.4.30
  24. Thermal and light impacts on the early growth stages of the kelp Saccharina angustissima (Laminariales, Phaeophyceae) vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.5.12
  25. Characterization of a high‐growth‐rate mutant strain of Pyropia yezoensis using physiology measurement and transcriptome analysis vol.55, pp.3, 2017, https://doi.org/10.1111/jpy.12842
  26. Biofouling in marine aquaculture: a review of recent research and developments vol.35, pp.6, 2019, https://doi.org/10.1080/08927014.2019.1640214
  27. Opportunities, challenges and future directions of open-water seaweed aquaculture in the United States vol.58, pp.5, 2017, https://doi.org/10.1080/00318884.2019.1625611
  28. Development of seaweed cultivation in Latin America: current trends and future prospects vol.58, pp.5, 2017, https://doi.org/10.1080/00318884.2019.1640996
  29. An overview on agarophyte trade in India and need for policy interventions vol.31, pp.5, 2019, https://doi.org/10.1007/s10811-019-01791-z
  30. Fermentation of sugar kelp (Saccharina latissima)-effects on sensory properties, and content of minerals and metals vol.31, pp.5, 2017, https://doi.org/10.1007/s10811-019-01827-4
  31. A Microcosm Multitrophic Aquaculture System vol.370, pp.None, 2017, https://doi.org/10.1088/1755-1315/370/1/012012
  32. Preliminary assessment on the effects of the commercial seaweed extract, AMPEP, on growth and thermal tolerance of the kelp Saccharina spp. from the Northwest Atlantic vol.31, pp.6, 2017, https://doi.org/10.1007/s10811-019-01852-3
  33. The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin vol.10, pp.1, 2020, https://doi.org/10.3390/biom10010107
  34. Exploring community-based marine aquaculture as a coastal resource management opportunity in Nova Scotia, Canada vol.5, pp.1, 2017, https://doi.org/10.1139/facets-2019-0010
  35. Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle vol.7, pp.None, 2017, https://doi.org/10.3389/fvets.2020.597430
  36. Macroalgal germplasm banking for conservation, food security, and industry vol.18, pp.2, 2017, https://doi.org/10.1371/journal.pbio.3000641
  37. Cultivar Development of Kelps for Commercial Cultivation-Past Lessons and Future Prospects vol.8, pp.None, 2017, https://doi.org/10.3389/fmars.2020.00110
  38. The application of flow cytometry for kelp meiospore isolation vol.46, pp.None, 2020, https://doi.org/10.1016/j.algal.2020.101810
  39. Food safety hazards in the European seaweed chain vol.19, pp.2, 2020, https://doi.org/10.1111/1541-4337.12523
  40. Photoacclimation and Photoprotection of Juvenile Sporophytes of Macrocystis pyrifera (Laminariales, Phaeophyceae) Under High‐light Conditions During Short‐term Shallow‐water Cultivat vol.56, pp.2, 2020, https://doi.org/10.1111/jpy.12951
  41. Complete chloroplast genome sequences of Pyropia dentata (Bangiales, Rhodophyta) vol.5, pp.2, 2017, https://doi.org/10.1080/23802359.2020.1749164
  42. How light and biomass density influence the reproduction of delayed Saccharina latissima gametophytes (Phaeophyceae) vol.56, pp.3, 2020, https://doi.org/10.1111/jpy.12976
  43. Spatio-temporal variability and association of diatom-dinoflagellate assemblages of Acanthophora, Hypnea and Gracilaria (Rhodophyta) vol.55, pp.3, 2020, https://doi.org/10.1080/09670262.2020.1740797
  44. Harnessing genomics to fast-track genetic improvement in aquaculture vol.21, pp.7, 2017, https://doi.org/10.1038/s41576-020-0227-y
  45. A review of reported seaweed diseases and pests in aquaculture in Asia vol.51, pp.4, 2017, https://doi.org/10.1111/jwas.12649
  46. An analysis of the current status and future of biosecurity frameworks for the Indonesian seaweed industry vol.32, pp.4, 2020, https://doi.org/10.1007/s10811-019-02020-3
  47. Technical challenges for offshore cultivation of kelp species: lessons learned and future directions vol.63, pp.4, 2017, https://doi.org/10.1515/bot-2019-0005
  48. Seaweed resources of Korea vol.63, pp.4, 2017, https://doi.org/10.1515/bot-2020-0007
  49. Restoring Pre-Industrial CO2 Levels While Achieving Sustainable Development Goals vol.13, pp.18, 2017, https://doi.org/10.3390/en13184972
  50. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System vol.9, pp.10, 2017, https://doi.org/10.3390/foods9101382
  51. The suitability of Ulva fasciata, Ulva compressa, and Hypnea musciformis for production in an outdoor spray cultivation system, with respect to biomass yield and protein content vol.32, pp.5, 2017, https://doi.org/10.1007/s10811-020-02130-3
  52. Transcriptomic exploration of genes related to the formation of archeospores in Pyropia yezoensis (Rhodophyta) vol.32, pp.5, 2017, https://doi.org/10.1007/s10811-020-02174-5
  53. Concise review of Osmundea pinnatifida (Hudson) Stackhouse vol.32, pp.5, 2017, https://doi.org/10.1007/s10811-020-02183-4
  54. Effects of climate change on coastal ecosystem food webs: Implications for aquaculture vol.162, pp.None, 2017, https://doi.org/10.1016/j.marenvres.2020.105103
  55. Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions vol.18, pp.12, 2020, https://doi.org/10.3390/md18120641
  56. Culture of the brown seaweed Sargassum siliquosum J. Agardh (Phaeophyceae, Ochrophyta): from hatchery to out-planting vol.32, pp.6, 2017, https://doi.org/10.1007/s10811-020-02228-8
  57. Control of fouling in the aquaculture of Fucus vesiculosus and Fucus serratus by regular desiccation vol.32, pp.6, 2017, https://doi.org/10.1007/s10811-020-02274-2
  58. Physiological and Transcriptome Analysis of Exogenous L-Arginine in the Alleviation of High-Temperature Stress in Gracilariopsis lemaneiformis vol.8, pp.None, 2017, https://doi.org/10.3389/fmars.2021.784586
  59. Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical Southwestern Atlantic vol.121, pp.None, 2021, https://doi.org/10.1016/j.ecolind.2020.107101
  60. Revisiting the ‘bank of microscopic forms’ in macroalgal‐dominated ecosystems vol.57, pp.1, 2017, https://doi.org/10.1111/jpy.13092
  61. Marine Algae as a Potential Source for Anti-diabetic Compounds - A Brief Review vol.27, pp.6, 2017, https://doi.org/10.2174/1381612826666200909124526
  62. Discoloration in the marine red algae Pyropia : causative factors and exploiting the biotechnological potential of a waste resource vol.13, pp.2, 2021, https://doi.org/10.1111/raq.12500
  63. Emergy synthesis for aquaculture: A review on its constraints and potentials vol.13, pp.2, 2017, https://doi.org/10.1111/raq.12519
  64. On the Health Benefits vs. Risks of Seaweeds and Their Constituents: The Curious Case of the Polymer Paradigm vol.19, pp.3, 2017, https://doi.org/10.3390/md19030164
  65. Substitution of red seaweed (Porphyra) with other seaweeds in nori making vol.733, pp.1, 2021, https://doi.org/10.1088/1755-1315/733/1/012109
  66. Kelp aquaculture in China: a retrospective and future prospects vol.13, pp.3, 2017, https://doi.org/10.1111/raq.12524
  67. Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification vol.187, pp.None, 2021, https://doi.org/10.1016/j.envexpbot.2021.104492
  68. A case for seaweed aquaculture inclusion in U.S. nutrient pollution management vol.129, pp.None, 2021, https://doi.org/10.1016/j.marpol.2021.104506
  69. Optimizing the initial cultivation stages of kelp Ecklonia radiata for restoration vol.29, pp.5, 2017, https://doi.org/10.1111/rec.13388
  70. Understanding the metabolome and metagenome as extended phenotypes: The next frontier in macroalgae domestication and improvement vol.52, pp.5, 2017, https://doi.org/10.1111/jwas.12782
  71. Comparative analysis of morphometric traits of farmed sugar kelp and skinny kelp, Saccharina spp., strains from the Northwest Atlantic vol.52, pp.5, 2017, https://doi.org/10.1111/jwas.12783
  72. Evaluation of nutrient bioextraction by seaweed and shellfish aquaculture in Korea vol.52, pp.5, 2017, https://doi.org/10.1111/jwas.12786
  73. The Algae Foundation® and Algae Technology Educational Consortium vol.52, pp.5, 2017, https://doi.org/10.1111/jwas.12817
  74. Impact of Blanching, Freezing, and Fermentation on Physicochemical, Microbial, and Sensory Quality of Sugar Kelp (Saccharina latissima) vol.10, pp.10, 2017, https://doi.org/10.3390/foods10102258
  75. Environmental impact and nutritional value of food products using the seaweed Saccharina latissima vol.319, pp.None, 2017, https://doi.org/10.1016/j.jclepro.2021.128689
  76. Research on the dissipation of green tide and its influencing factors in the Yellow Sea based on Google Earth Engine vol.172, pp.None, 2017, https://doi.org/10.1016/j.marpolbul.2021.112801
  77. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review vol.105, pp.6, 2017, https://doi.org/10.1111/jpn.13509
  78. Optimization of chlorophyll extraction solvent of bulung sangu (Gracilaria sp.) seaweed vol.913, pp.1, 2017, https://doi.org/10.1088/1755-1315/913/1/012073
  79. Optimal Design of the Biofuel Supply Chain Utilizing Multiple Feedstocks: A Korean Case Study vol.9, pp.44, 2017, https://doi.org/10.1021/acssuschemeng.1c03945
  80. Influence of commercial farming of Kappaphycus alvarezii (Rhodophyta) on native seaweeds of Gulf of Mannar, India: Evidence for policy and management recommendation vol.25, pp.6, 2021, https://doi.org/10.1007/s11852-021-00836-1
  81. Seaweed biosecurity in Tanzania: Lessons to be learned from other major plant crops vol.5, pp.None, 2017, https://doi.org/10.1016/j.envc.2021.100319
  82. Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging vol.17, pp.1, 2017, https://doi.org/10.1186/s13007-021-00711-y
  83. Key Targets for Improving Algal Biofuel Production vol.3, pp.4, 2021, https://doi.org/10.3390/cleantechnol3040043
  84. The One-Health approach in seaweed food production vol.158, pp.None, 2017, https://doi.org/10.1016/j.envint.2021.106948
  85. Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: Pathways, synthesis and next steps vol.14, pp.1, 2017, https://doi.org/10.1111/raq.12584
  86. Ice‐Ice disease: An environmentally and microbiologically driven syndrome in tropical seaweed aquaculture vol.14, pp.1, 2017, https://doi.org/10.1111/raq.12606
  87. Enhancements provided by the use of an Ascophyllum nodosum extract can be transferred through archeospores in the red alga Neopyropia yezoensis (Ueda) L.-E. Yang & J. Brodie vol.177, pp.None, 2017, https://doi.org/10.1016/j.aquabot.2021.103481
  88. Development of an efficiency criterion for the removal of pest organisms (ulvoid green algae and diatoms) from Neopyropia aquaculture using the acid wash (pH shock) method vol.548, pp.p2, 2022, https://doi.org/10.1016/j.aquaculture.2021.737677
  89. Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits vol.53, pp.None, 2017, https://doi.org/10.1016/j.ecoser.2021.101396
  90. An international evaluation of biosecurity management capacity in the seaweed aquaculture industry vol.304, pp.None, 2017, https://doi.org/10.1016/j.jenvman.2021.114112