DOI QR코드

DOI QR Code

Improvement of Attitude Determination Based on Specific Force Vector Matching

비력벡터매칭 기법을 이용한 자세결정 알고리즘의 성능 향상

  • Choe, Yeongkwon (Department of Mechanical & Aerospace Engineering, Automatic and Systems Research Institute, Seoul National University) ;
  • Park, Chan Gook (Department of Mechanical & Aerospace Engineering, Automatic and Systems Research Institute, Seoul National University)
  • Received : 2016.08.31
  • Accepted : 2017.01.11
  • Published : 2017.02.01

Abstract

Attitude determination algorithms for aircraft and land vehicles use earth gravitational vector and geomagnetic vector; hence, magnetometers and accelerometers are employed. In dynamic situation, the output from accelerometers includes not only gravitational vector but also motional acceleration, thus it is hard to determine accurate attitude. The acceleration compensation method treated in this paper solves the problem to compensate the specific force vector for motional acceleration calculated by a GPS receiver. This paper analyzed the error from the corrected vector regarded as a constant by conventional acceleration compensation method, and improve the error by rederivation from measurements. The analyzed error factors and improvements by the proposed algorithm are verified by computer simulations.

항공기 및 지상 이동체 등에 사용되는 자세 및 방위 결정 시스템은 자세를 결정하기 위해 중력가속도 벡터와 지구자기장 벡터를 이용한다. 이를 위해 가속도계와 자력계를 이용하게 되는데, 가속도계의 경우 중력가속도뿐만 아니라 항체의 운동 가속도까지 포함하게 되어 가속 중에는 자세결정이 어려워진다. 본 논문에서 다루는 가속도 보상 방법은 가속도계에서 얻은 비력으로부터 GPS 수신기를 통해 계산한 항체의 가속도를 빼주어 이를 해결하는 방법이다. 기존의 알고리즘은 보상한 벡터를 상수 형태로 간주해 이용하게 되는데, 본 논문에서는 이로 인한 오차를 분석하고 측정치로부터 모델을 재유도해 성능을 개선했다. 기존의 알고리즘이 내포한 오차 요인과 본 논문에서 제안한 알고리즘에 의해 자세 추정 성능이 개선됨을 컴퓨터 시뮬레이션을 통해 확인했다.

Keywords

References

  1. Kornfeld, R. P., Hansman, R. J., and Deyst, J. j., "Single-antenna GPS-based aircraft attitude determination," Navigation, Vol. 45, No. 1, 1998, pp.51-60. https://doi.org/10.1002/j.2161-4296.1998.tb02371.x
  2. Kee, C., Cho, A., Kim, J., and No, H., "1 antenna, 3 dimensions: GPS flight control in UAV operations," Inside GNSS, March/April, 2010, pp.26-34.
  3. Livens, K. P. A., Mulder, J. A., and Chu, P., "Single GPS antenna attitude determination of a fixed wing aircraft aided with aircraft aerodynamics," AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005.
  4. Park, S., "Estimation method combining aircraft kinematics, GPS, and low-quality rate gyros," Aircraft Engineering and Aerospace Technology, Vol. 83, No. 3, 2011, pp.160-170. https://doi.org/10.1108/00022661111131258
  5. No., H., Cho, A., and Kee, C., "Attitude estimation method for small UAV under accelerative environment," GPS Solutions, Vol. 19, No. 3, 2015, pp.343-355. https://doi.org/10.1007/s10291-014-0391-7
  6. Gebre-Egziabher, D., Elkaim, G. H., Powell, J. D., and Parkinson, B. W., "A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors," Position Location and Navigation Symposium, IEEE 2000, 2000, pp.185-192
  7. Gebre-Egziabher, D., and Elkaim, G. H., "MAV attitude determination by vector matching," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 3, 2008, pp.1012-1028. https://doi.org/10.1109/TAES.2008.4655360
  8. Hemerly, E. M., Maciel, B. C., de P. Milhan, A., and Schad, V. R., "Attitude and heading reference system with acceleration compensation," Aircraft Engineering and Aerospace Technology, Vol. 84, No. 2, 2012, pp.87-93. https://doi.org/10.1108/00022661211207893
  9. Psiaki, M. L., Powell, S. P., and Kintner, P. M., "Accuracy of the global positioning system-derived acceleration vector," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000, pp.532-538. https://doi.org/10.2514/2.4561
  10. Wahba, G., "A least squares estimate of satellite attitude," SIAM review, Vol. 7, No. 3, 1965, pp.409-409.
  11. Bar-Itzhack, I. Y., and Oshman, Y., "Attitude determination from vector observations: Quaternion estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 21, No. 1, 1985, pp.128-136.
  12. Creamer, G., "Spacecraft attitude determination using gyros and quaternion measurements," The Journal of Astronautical Sciences, Vol. 44, No. 3, 1996, pp.357-371.
  13. Titterton, D., and Weston, J. L., Strapdown inertial navigation technology, The American Institute of Aeronautics and Astronautics, 2nd edition, 2004, pp. 42-45.