DOI QR코드

DOI QR Code

PVM 및 FBRM 기반 인라인 모니터링을 통한 indomethacin-saccharin 공결정의 생성 메커니즘이해

Understanding the Mechanism of Indomethacin-Saccharin Co-crystal Formation Using In-line Monitoring System based on PVM and FBRM

  • 김바울 (순천향대학교 의료과학대학 의약공학과) ;
  • 조민용 (순천향대학교 의료과학대학 의료과학과) ;
  • 최광진 (순천향대학교 의료과학대학 의약공학과)
  • Kim, Paul (Department of Pharmaceutical Engineering, Soon Chun Hyang University) ;
  • Cho, Min-Yong (Department of Medical Science, Soon Chun Hyang University) ;
  • Choi, Guang J. (Department of Pharmaceutical Engineering, Soon Chun Hyang University)
  • 투고 : 2016.09.07
  • 심사 : 2016.12.20
  • 발행 : 2017.04.01

초록

난용성 약물의 용해도를 증가시키고 안정성을 향상하기 위한 제약 공결정은, 미국 FDA가 지난 2016년 8월에 공결정을 solvate의 특별한 경우라고 정의를 수정하면서, 개량신약의 개발에 더욱 박차를 가할 것으로 추측된다. 본 연구에서는 모델 조합으로 잘 알려진 indomethacin-saccharin 공결정을 반용매 방법으로 제조할 때, 인라인 모니터링 기법을 적용하여, 반용매의 주입속도에 따른 indomethacin 준 안정상의 일시적인 생성 및 indomethacin-saccharin 공결정의 생성을 관찰하고 메커니즘을 제안하고자 하였다. 그간 인라인 모니터링을 위해서 매우 다양한 분석도구가 연구되어 왔는데, 본 연구에서는 PVM (particle vision measurement)와 FBRM (focused beam reflectance measurement)를 조합하여 공결정화 공정에서의 변화를 실시간으로 측정하였다. 공결정화 결과물의 오프라인 분석은 PXRD (powder x-ray diffraction)와 DSC (Differential scanning calorimeter)를 이용하여 수행하였다. 반용매의 주입 속도에 따라서 공결정이 생성되는 경로에 분명한 차이가 있음을 관찰하였으며, 이러한 상관 관계의 이해를 통해서 제약학적 특성이 더욱 일정하고 품질이 보증된 indomethacin-saccharin Co-crystal을 얻는 조건을 확립하였다. 본 연구결과, PVM과 FBRM을 조합한 인라인 모니터링은 제약 공결정 제조공정에서 활용성이 매우 높은 기술이라고 할 수 있다.

Pharmaceutical co-crystals primarily to improve the solubility as well as stability of insoluble drug are to be investigated more intensively for IMDs as US FDA has reclassified co-crystal as a special case of solvates in August this year. In this study, we proposed a mechanism of indomethacin-saccharin co-crystal formation and the creation of transient indomethacin meta-stable form using in-line monitoring tools with the addition rate of anti-solvent as a critical process parameter. Among various instruments, we combined PVM (particle vision measurement) and FBRM (focused beam reflectance measurement) for the in-line monitoring of anti-solvent co-crystallization process. The off-line characterization of resulting powders was carried out employing the PXRD (powder x-ray diffraction) and DSC (differential scanning calorimeter). It was observed that the pathway to the final IMC-SAC co-crystal was significantly dependent upon the anti-solvent addition rate. The process conditions to obtain high quality co-crystal powder effectively were established. Consequently, we concluded that in-line monitoring combing the PVM and FBRM should be useful for the in-line monitoring of pharmaceutical co-crystallization processes.

키워드

참고문헌

  1. Chang, J. W. and Yang, D. R., "Metastable Zone Prediction Model for Industrial Crystallization," KIC News, 10(5), 25-30 (2007).
  2. Sarma, B., Chen, J., Hsi, H.-Y. and Myerson, A. S., "Solid Forms of Pharmaceuticals: Polymorphs, Salts and Cocrystals," Korean J. Chem. Eng., 28(2), 315-322(2011). https://doi.org/10.1007/s11814-010-0520-0
  3. Liu, X., Sun, D., Wang, F., Wu, Y. J., Chen, Y. and Wang, L., "Monitoring of Antisolvent Crystallization of Sodium Scutellarein by Combined FBRM-PVM-NIR," Journal of Pharmaceutical Sciences, 100(6), 3(2011).
  4. Lee, M.-J., Wang, I.-C., Kim, M.-J., Kim, P., Song, K.-H., Chun, N.-H., Park, H.-G. and Choi, G. J., "Controlling the Polymorphism of Carbamazepine-saccharin Cocrystals Formed During Antisolvent Cocrystallization Using Kinetic Parameters," Korean J. Chem. Eng., 32(9), 1910-1917(2015). https://doi.org/10.1007/s11814-014-0384-9
  5. Genck, W., Make The Most of Antisolvent Crystallization, Chemical Processing, Article, Nov 08, 2010.
  6. http://sdic.sookmyung.ac.kr/drug_monograph/view.asp?id=713.
  7. Surwase, S. A., Boetker, J. P., Saville, D., Boyd, B. J., Gordon, K. C., Peltonen, L. and Strachan, C. J., "Indomethacin: New Polymorphs of an Old Drug," Mol. Pharmaceutics, 10, 4472-4480 (2013). https://doi.org/10.1021/mp400299a
  8. Khomane, K. S., More, P. K., Raghavendra, G. and Bansal, A. K., "Molecular Understanding of the Compaction Behavior of Indomethacin Polymorphs," Mol. Pharmaceutics, 10, 631-639(2013). https://doi.org/10.1021/mp300390m
  9. Carpentier, L., Decressain, R., Desprez, S. and Descamps, M., "Dynamics of the Amorphous and Crystalline ${\alpha}-$, $\gamma$-Phases of Indomethacin," J. Phys. Chem. B, 110, 457-464(2005).
  10. Csermely, P., Korcsmaros, T. Kiss, H. J., London, G. and Nussinov, R., "Structure and Dynamics of Molecular Networks: A novel Paradigm of Drug Discovery: A comprehensive Review," Pharmacol. Ther., 138(3), 333-408(2013). https://doi.org/10.1016/j.pharmthera.2013.01.016
  11. Stegemann, S., Leveiller, F., Franchi, D., De Jong, H. and Linden, H., "When Poor Solubility Becomes an Issue: From early Stage to Proof of Concept," Eur. J. Pharm. Sci., 31(5), 249-261(2007). https://doi.org/10.1016/j.ejps.2007.05.110
  12. Di, L., Fish, P. V. and Mano, T., Bridging Solubility Between Drug Discovery and Development., Drug Discovery Today, 486-495(2012).
  13. Turner, J. R. Drug Discovery. In New Drug Development; Springer: New York, pp 21-34(2010).
  14. Li, P. and Zhao, L., "Developing Early Formulations: Practice and Perspective," Int. J. Pharmaceutics, 341(1-2), 1-19(2007). https://doi.org/10.1016/j.ijpharm.2007.05.049
  15. Baird, J. A., Van Eerdenbrugh, B. Taylor, L. S., A classification System to Assess the Crystallization Tendency of Organic Molecules From Undercooled Melts," J. Pharm. Sci., 2010, 99 (9), 3787-3806(2010). https://doi.org/10.1002/jps.22197
  16. Engers, D., Teng, J., Jimenez-Novoa, J., Gent, P., Hossack, S., Campbell, C., Thomson, J., Ivanisevic, I., Templeton, A., Byrn, S., Newman, A., A solid-state Approach to Enable Early Development Compounds: Selection and Animal Bioavailability Studies of an Itraconazole Amorphous Solid Dispersion," J. Pharm. Sci., 99(9), 3901-3922(2010). https://doi.org/10.1002/jps.22233
  17. Neervannan, S., "Preclinical Formulations for Discovery and Toxicology: Physicochemical Challenges," Expert Opin. Drug Metab. Toxicol., 2(5), 715-731(2006). https://doi.org/10.1517/17425255.2.5.715
  18. Hancock, B. C. and Zografi, G., "Characteristics and Significance of the Amorphous State in Pharmaceutical Systems," J. Pharm. Sci., 86(1), 1-12(1997). https://doi.org/10.1021/js9601896
  19. Laitinen, R., Lobmann, K., Strachan, C. J., Grohganz, H. and Rades, T., "Emerging Trends in the Stabilization of Amorphous Drugs," Int. J. Pharmaceutics, 453, 65-79(2013). https://doi.org/10.1016/j.ijpharm.2012.04.066
  20. Bhugra, C. and Pikal, M. J., "Role of Thermodynamic, Molecular and Kinetic Factors in Crystallization From the Amorphous State," J. Pharm. Sci., 97(4), 1329-1349(2008). https://doi.org/10.1002/jps.21138
  21. Savolainen, M., Kogermann, K., Heinz, A., Aaltonen, J., Peltonen, L., Strachan, C. and Yliruusi, J., "Better Understanding of Dissolution Behaviour of Amorphous Drugs by in Situ Solid-state Analysis Using Raman Spectroscopy," Eur. J. Pharm. Biopharm., 71(1), 71-79(2009). https://doi.org/10.1016/j.ejpb.2008.06.001
  22. Wu, T., Sun, Y., Li, N., De Villiers, M. M. and Yu, L., "Inhibiting Surface Crystallization of Amorphous Indomethacin by Nano Coating," Langmuir, 23(9), 5148-5153(2007). https://doi.org/10.1021/la070050i
  23. Alonzo, D., Zhang, G., Zhou, D., Gao, Y. and Taylor, L., "Understanding the Behavior of Amorphous Pharmaceutical Systems During Dissolution," Pharm. Res., 27(4), 608-618(2010). https://doi.org/10.1007/s11095-009-0021-1
  24. Greco, K. and Bogner, R., "Crystallization of Amorphous Indomethacin During Dissolution: Effect of Processing and Annealing," Mol. Pharmaceutics, 7(5), 1406-1418(2010). https://doi.org/10.1021/mp1000197
  25. Andronis, V., Yoshioka, M. and Zografi, G., "Effects of Sorbed Water on the Crystallization of Indomethacin From the Amorphous State," J. Pharm. Sci., 86(3), 346-351(1997). https://doi.org/10.1021/js9602711
  26. Andronis, V. and Zografi, G., "Crystal Nucleation and Growth of Indomethacin Polymorphs From the Amorphous State," J. Non-Cryst. Solids, 271(3), 236-248(2000). https://doi.org/10.1016/S0022-3093(00)00107-1
  27. Hancock, B. C., Shamblin, S. L. and Zografi, G., "Molecular Mobility of Amorphous Pharmaceutical Solids Below Their Glass Transition Temperatures," Pharm. Res., 12(6), 799-806(1995). https://doi.org/10.1023/A:1016292416526
  28. Borka, L., "The Polymorphism of Indomethacin, New Modifications, Their Melting Behaviour and Solubility," Acta Pharm. Suec., 11, 295-303(1974).
  29. Lin, S. Y., "Isolation and Solid-state Characteristics of a New Crystal Form of Indomethacin," J. Pharm. Sci., 81(6), 572-576 (1992). https://doi.org/10.1002/jps.2600810622
  30. Takiyama, H., Minamisono, T. Osada, Y. and Matsuoka, M., "Operation Design for Controlling Polymorphism in the Anti-solvent Crystallization by Using Ternary Phase Diagram," Chem. Eng. Res. Design. 88, 1242-1247(2010). https://doi.org/10.1016/j.cherd.2009.09.011
  31. Wang, X., de Armas, H. N., Blaton, N., Michoel, A., den Mooter, G. V., "Phase Characterization of Indomethacin in Binary Solid Dispersions with PVP VA64 or Myrj 52," International Journal of Pharmaceutics, 345, 95-100(2007). https://doi.org/10.1016/j.ijpharm.2007.05.046
  32. Chen, X., Morris, K. R., Griesser, U. J., Byrn, S. R. and Stowell, J. G., "Reactivity Differences of Indomethacin Solid Forms with Ammonia Gas," J. Am. Chem. Soc., 124, 15012-15019(2002). https://doi.org/10.1021/ja017662o
  33. Qi, S. and Craig, D. Q. M., "The Development of Modulated, Quasi-Isothermal and Ultraslow Thermal Methods as a Means of Characterizing the $\alpha$ to $\gamma$ Indomethacin Polymorphic Transformation," Mol. Pharmaceutics, 9, 1087-1099(2012). https://doi.org/10.1021/mp2003412
  34. Majid Saeedi, Jafar Akbari, Katayoun Morteza-Semnani, Reza Enayati-Fard, Shirin Sar-Reshteh-dar and Ala Soleymania, "Enhancement of Dissolution Rate of Indomethacin: Using Liquisolid Compacts," Iran J Pharm Res., 10(1), 25-34(2011).
  35. Alsaidan, S. M., Alsughayer, A. A. and Eshra, A. G., "Improved Dissolution Rate of Indomethacin by Adsorbents," Drug Dev. Ind. Pharm., 24, 389-394(1998). https://doi.org/10.3109/03639049809085635
  36. Chun, N.-H., Wang, I.-C., Lee, M.-J., Jung, Y.-T., Lee, S., Kim, W.-S. and Choi, G. J., "Characteristics of Indomethacin-Saccharin (IMC-SAC) Co-Crystals Prepared by an Anti-Solvent Crystallization Process," European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 854-861(2013). https://doi.org/10.1016/j.ejpb.2013.02.007
  37. Wang, I.-C., Lee, M.-J., Sim, S.-J., Kim, W.-S., Chun, N.-H. and Choi, G. J., "Anti-Solvent Co-Crystallization of Carbamazepine and Saccharin," International Journal of Pharmaceutics, 450(1-2), 311-322(2013). https://doi.org/10.1016/j.ijpharm.2013.04.012
  38. De Beer, T. R., Baeyens, W. R., Ouyang, J., Vervaet, C. and Remon, J. P., "Raman Spectroscopy as a Process Analytical Technology Tool for the Understanding and the Quantitative in-line Monitoring of the Homogenization Process of a Pharmaceutical Suspension," Analyst., 131(10), 1137-44(2006). https://doi.org/10.1039/b605299a
  39. Kim, J. Y. and Kwon, K., "A Study on the Comparison of Korea GMP with PIC/S GMP for Enhancing International Competecy of Medicinal Product Quality," Yakhak Hoeji, 57(6), 432-441 (2013).
  40. http://www.dailypharm.com/News/184408.
  41. http://www.yonhapnews.co.kr/bulletin/2016/07/27/0200000000AKR20160727096700017.HTML?input=1195m.
  42. Kelly, A. L., Gough, T., Dhumal, R. S., Halsey, S. A., Paradkar, A., "Monitoring Ibuprofen-Nicotinamide Cocrystal Formation During Solvent Free Continuous Cocrystallization (SFCC) Using Near Infrared Spectroscopy as a PAT Tool," Int. J. Pharm., 426(1-2), 15-20(2012). https://doi.org/10.1016/j.ijpharm.2011.12.033
  43. U. S. Department of Health and Human Services Food and Drug Administration, Guidance for Industry PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance, (http://www.fda.gov/downloads/Drugs/.../Guidances/ucm070305.pdf).
  44. Su, M., Wang, L., Sun, H. and Wang, J. K., "FBRM and PVM Investigations of the Double Feed Semi-Batch Crystallization of 6-Aminopenicillanic Acid," Frontiers of Chemical Engineering in China, 3(3), 282-288(2009). https://doi.org/10.1007/s11705-009-0018-7
  45. Liu, X., Sun, D., Wang, F., Wu, Y. J. and Chen, Y., "Monitoring of Antisolvent Crystallization of Sodium Scutellarein by Combined Fbrm-pvm-nir," J. Pharmaceutical Sci., 100(6), (2011).
  46. Leyssens, T., "Carine Baudry and Maria Luisa Escudero Hernandez, Optimization of a Crystallization by Online FBRM Analysis of Needle-Shaped Crystals," Org. Process Res., 413-426(2011).
  47. Jia, C.-Y., Yin, Q.-X., Zhang, M.-J., Wang, J.-K. and Shen, Z.-H., "Polymorphic Transformation of Pravastatin Sodium Monitored Using Combined Online FBRM and PVM," Organic Process Research & Development, 12(6), (2008).