DOI QR코드

DOI QR Code

Al-Ce 산화물에 담지된 CuO 촉매상에서 저온 CO산화반응

Low Temperature CO Oxidation over CuO Catalyst Supported on Al-Ce Oxide Support

  • 박정현 (한국화학연구원 탄소화자원연구소 온실가스자원화그룹) ;
  • 윤현기 (충북대학교 산학협력단) ;
  • 신채호 (충북대학교 화학공학과)
  • Park, Jung-Hyun (Korea Research Institute of Chemical Technology, Carbon Resource Institute, Greenhouse Gas Resources Research Group,) ;
  • Yun, Hyun Ki (Industry-University Cooperation Foundation, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2016.11.18
  • 심사 : 2016.12.27
  • 발행 : 2017.04.01

초록

CuO의 함량이 반응활성에 미치는 영향을 조사하기 위하여 CuO(x)/0.3Al-0.7Ce (x = 2~20 wt%) 촉매를 함침법으로 제조하고 저온 CO 산화반응을 수행하였다. CuO(10)/0.3Al-0.7Ce 촉매가 반응물 중 수분의 존재 유무에 관계없이 가장 우수한 반응활성을 나타내었다. 수분의 존재는 활성점에 CO와의 경쟁흡착으로 활성점이 감소하여 50% CO 전환율 온도인 $T_{50%}$가 약 $50^{\circ}C$ 고온으로 이동되어 관찰되었다. $N_2O$-적정실험으로 구한 구리 표면적과 CO-펄스 실험으로 계산된 격자산소의 양은 CuO의 함량 증가에 따라 증가하였고, CuO(10)/0.3Al-0.7Ce 촉매에서 최대화되었다. 이러한 특성 분석결과는 사용된 촉매의 CO 산화반응에 대한 $T_{50%}$의 경향과 잘 일치하였다. 위의 특성분석 결과로부터, CuO(x)/0.3Al-0.7Ce 촉매의 CO 산화반응에 대한 반응성은 구리 표면적과 격자산소의 양과 밀접하게 관련된다고 결론지을 수 있다.

CuO(x)/0.3Al-0.7Ce catalysts with different CuO loadings (x = 2~20 wt%) were prepared by impregnation method and investigated the effects of CuO loadings on the low temperature CO oxidation. Of the used catalysts, the CuO(10)/0.3Al-0.7Ce catalyst showed the highest catalytic performance in the absence or presence of water vapor. In the presence of water vapor, the catalytic performance was drastically decreased, with a temperature of 50% CO conversion ($T_{50%}$) shifted to higher temperature by $50^{\circ}C$ compared to the those in dry conditions because of the competitive adsorption of water vapor on the active sites. The copper metal surface area calculated from $N_2O$-titration analysis and the oxygen capacity from CO-pulse experiments were increased with the CuO loadings and showed a maximum at 10 wt%CuO/0.3Al-0.7Ce catalyst. These trends are in good agreement with the tendency of $T_{50%}$ of the catalysts. From these characteristic aspects, it could be deduced that the catalytic performance was closely related to the oxygen capacity and the copper metallic surface area.

키워드

참고문헌

  1. Manzoli, M., Monte, R. D., Boccuzzi, F., Coluccia, S. and Kaspar, J., "CO Oxidation over $CuO_x-CeO_2-ZrO_2$ Catalysts: Transient Behaviour and Role of Copper Clusters in Contact with Ceria," Appl. Catal. B: Environ., 61(3-4), 192-205(2005). https://doi.org/10.1016/j.apcatb.2005.05.005
  2. Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T. and Kielin, E. J., "Au/MnOx Catalytic Performance Characteristics fo Rlow-temperature Carbon Monoxide Oxidation," Appl. Catal. B: Environ., 6(2), 117-126(1995). https://doi.org/10.1016/0926-3373(95)00010-0
  3. Botas, J. A, Gutierrez-Ortiz, M. A., Gonzalez-Marcos, M. P., Gonzalez-Marcos, J. A. and Gonzalez-Velasco, J. R., "Kinetic Considerations of Three-way Catalysis in Automobile Exhaust Converters," Appl. Catal. B: Environ., 32(4), 243-256(2001). https://doi.org/10.1016/S0926-3373(01)00144-8
  4. Reddy, B. M. and Rao, K. M., "Copper Promoted Ceria-zirconia Based Bimetallic Catalysts for Low Temperature Soot Oxidation," Catal. Commun., 10(9), 1350-1353(2009). https://doi.org/10.1016/j.catcom.2009.02.020
  5. Ruth, K., Hayes, M., Burch, R., Tsubota, S. and Haruta M., "The Effects of $SO_2$ on the Oxidation of CO and Propane on Supported Pt and Au Catalysts," Appl. Catal. B: Environ., 24(3-4), L133-L138(2000). https://doi.org/10.1016/S0926-3373(99)00100-9
  6. Laguna, O. H., Centeno, M. A., Boutonnet, M., Odriozola, J. A., "Au-supported on Fe-doped Ceria Solids Prepared in Water-in-oil Microemulsions: Catalysts for CO Oxidation," Catal. Today, 278(1), 140-149(2016). https://doi.org/10.1016/j.cattod.2016.05.059
  7. Park, J.-H., Kang, S. E., Cho, K. H., Lee, T. W., Han, H. S. and Shin, C.-H., "Low-temperature CO Oxidation over Water Tolerant Pt Catalyst Supported on Al-Modified $CeO_2$," Korean J. Chem. Eng., 30(3), 598-604(2013). https://doi.org/10.1007/s11814-012-0207-9
  8. Park, J.-H., Cho, K. H., Kim, Y. J. and Shin, C.-H., "CO Oxidation over Pt Supported on Al-Ce Mixde Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce)," Clean Technology, 17(2), 166-174(2011). https://doi.org/10.7464/KSCT.2011.17.2.166
  9. Rio, E., Hungria, A. B., Tinoco, M., Manzorro, R., Cauqui, M. A., Calvino, J. J. and Perez-Omil, J. A., "$CeO_2$-modified $Au/TiO_2$ Catalysts with Outstanding Stability Under Harsh CO Oxidation Conditions," Appl. Catal. B: Environ., 197(15), 86-94(2016). https://doi.org/10.1016/j.apcatb.2016.04.037
  10. Vedyagin, A. A, Volodin, A. M., Kenzhin, R. M., Stoyanovskii, V. O., Shubin, Y. V., Plyusnin, P. E. and Mishakov, I. V., "Effect of Metal-metal and Metal-support Interaction on Activity and Stability of Pd-Rh/alumina in CO Oxidation," Catal. Today, In Press (2016).
  11. Avgouropoulos, G. and Ioannides, T., "Selective CO Oxidation over $CuO-CeO_2$ Catalysts Prepared via the Urea-nitrate Combustion Method," Appl. Catal. A: Gen., 244(1), 155-167(2003). https://doi.org/10.1016/S0926-860X(02)00558-6
  12. Sedmak, G., Hocevar, S. and Levec, J., "Transient Kinetic Model of CO Oxidation over a Nanostructured $Cu_{0.1}Ce_{0.9}O_{2-y}$ Catalyst," J. Catal., 222(1), 87-99(2004). https://doi.org/10.1016/j.jcat.2003.10.006
  13. Martinez-Arias, A., Hungria, A.B., Munuera, G. and Gamarra, D., "Preferential Oxidation of CO in Rich $H_2$ over $CuO/CeO_2$: Details of Selectivity and Deactivation Under the Reactant Stream," Appl. Catal. B: Environ., 65(3-4), 207-216(2006). https://doi.org/10.1016/j.apcatb.2006.02.003
  14. Artizzu, P., Garbowski, E., Primet, M., Brulle, Y. and Saint-Just, J., "Catalytic Combustion of Methane on Aluminate-supported Copper Oxide," Catal. Today, 47(1-4), 83-93(1999). https://doi.org/10.1016/S0920-5861(98)00285-5
  15. Sun, K., Liu, J. and Browning, N. D., "Direct Atomic Scale Analysis of the Distribution of Cu Valence States in $Cu/g-Al_2O_3$ Catalysts," Appl. Catal. B: Environ., 38(4), 271-281(2002). https://doi.org/10.1016/S0926-3373(02)00055-3
  16. Carniti, P., Gervasini, A., Modica, V. H. and Ravasio, N., "Catalytic Selective Reduction of NO with Ethylene over a Series of Copper Catalysts on Amorphous Silicas," Appl. Catal. B: Environ., 28(3-4), 175-185(2000). https://doi.org/10.1016/S0926-3373(00)00172-7
  17. Miyadera, T., "Selective Reduction of $NO_x$ by Ethanol on Catalysts Composed of $Ag/Al_2O_3$ and $Cu/TiO_2$ with out Formation of Harmful by-products," Appl. Catal. B: Environ., 16(2), 155-164(1998). https://doi.org/10.1016/S0926-3373(97)00069-6
  18. Pietrogiacomi, D., Sannino, D., Tuti, S., Ciambelli, P., Indovina, V., Occhiuzzi, M. and Pepe, F., "The Catalytic Activity of $CuO_x/ZrO_2$ for the Abatement of NO with Propene or Ammoniain the Presence of $O_2$," Appl. Catal. B: Environ., 21(2), 141-150(1999). https://doi.org/10.1016/S0926-3373(99)00018-1
  19. Rao, K. N., Bharali, P., Thrimurthulu, G. and Reddy, B. M., "Supported Copper-ceria Catalysts for Low Temperature CO Oxidation," Catal. Commun., 11(10), 863-866(2010). https://doi.org/10.1016/j.catcom.2010.03.009
  20. Sedmak, G., Hocevar, S. and Levec, J., "Kinetics of Selective CO Oxidation in Excess of $H_2$ over the Nanostructured $Cu_{0.1}Ce_{0.9}O_{2-y}$ Catalyst," J. Catal., 213(2), 135-150(2003). https://doi.org/10.1016/S0021-9517(02)00019-2
  21. Harrison, P. G., Ball, I. K., Azelee, W., Daniell, W. and Goldfarb, D., "Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts," Chem. Mater., 12(12), 3715-3725(2000). https://doi.org/10.1021/cm001113k
  22. Vidal, H., Kaspar, J., Pijolat, M., Colon, G., Bernal, S., Cordon, A., Perrichon, V. and Fally, F., "Redox Behavior of $CeO_2-ZrO_2$ Mixed Oxides: II. Influence of Redox Treatments on Low Surface Area Catalysts," Appl. Catal. B: Environ., 30(1-2), 75-85(2001). https://doi.org/10.1016/S0926-3373(00)00221-6
  23. Li, Y., Wang, X. and Song, C., "Spectroscopic Characterization and Catalytic Activity of Rh Supported on $CeO_2$-modified $Al_2O_3$ for Low-temperature Steam Reforming of Propane," Catal. Today, 263, 22-34(2016). https://doi.org/10.1016/j.cattod.2015.08.063
  24. Park, J.-H. and Shin, C.-H., "Low Temperature CO Oxidation over CuO Catalyst Supported on Al-Ce Oxide: Effects of Support Composition," Korean Chem. Eng. Res., in preparation.
  25. Zhao, F., Gong, M., Zhang, G. and Li, J., "Effect of the Loading Content of CuO on the Activity and Structure of CuO/Ce-Mn-O Catalysts for CO Oxidation," J. Rare Earth, 33(6), 604-610(2014).
  26. Evans, J. W., Wainwright, M. S., Bridgewater, A. J. and Young, D. J., "On the Determination of Copper Surface Area by Reaction with Nitrous Oxide," Appl. Catal., 7(1), 75-83(1983). https://doi.org/10.1016/0166-9834(83)80239-5
  27. Hsin-Fu, C., Abu, S. M., Wen-Su, H. and Wen-Hsiung, L., "Effect of Acidity and Copper Surface Area of the $Cu/Al_2O_3$ Catalyst Prepared by Electroles Splating Procedure on Dehydrogenation Reactions," J. Mol. Catal., 94(2), 233-242(1994). https://doi.org/10.1016/S0304-5102(94)87045-4
  28. Dow, W. P., Wang, Y. P. and Huang, T. J., "Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst: I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction," J. Catal., 160(2), 155-170(1996). https://doi.org/10.1006/jcat.1996.0135
  29. Ratnasamy, P., Srinivas, D., Satyanarayana, C. V. V., Manikandan, P., Kumaran, R. S. S., Sachin, M. and Shetti, V. N., "Influence of the Support on the Preferential Oxidation of CO in Hydrogen-rich Steam Reformates over the $CuO-CeO_2-ZrO_2$ System," J. Catal., 221(2), 455-465(2004). https://doi.org/10.1016/j.jcat.2003.09.006
  30. Flores, J. H., Peixoto, D. P. B., Appel, L. G., Avillez, R. R. and Silva, M. I. P., "The Influence of Different Methanol Synthesis Catalysts on Direct Synthesis of DME from Syngas," Catal. Today, 172(1), 218-225(2011). https://doi.org/10.1016/j.cattod.2011.02.063
  31. Bae, J. W., Kang, S.-H., Lee, Y.-J. and Jun, K.-W., "Synthesis of DME from Syngas on the Bifunctional $Cu-ZnO-Al_2O_3/Zr$-modified Ferrierite: Effect of Zr Content," Appl. Catal. B: Environ., 90(3-4), 426-435(2009). https://doi.org/10.1016/j.apcatb.2009.04.002
  32. Venugopal, A., Palgunadi, J., Jung, K., D., Joo, O.-S. and Shin, C.-H., "Dimethyl Ether Synthesis on the Admixed Catalysts of Cu-Zn-Al-M (M = Ga, La, Y, Zr) and ${\gamma}-Al_2O_3$: The Role of Modifier," J. Mol. Catal. A: Chem., 302(1-2), 20-27(2009). https://doi.org/10.1016/j.molcata.2008.11.038
  33. Liu, W. and Flytzani-Stephanopoulos, M., "Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I. Catalyst Composition and Activity," J. Catal., 153(2), 304-316(1995). https://doi.org/10.1006/jcat.1995.1132
  34. Hasegawa, Y., Fukumoto, K., Ishima, T., Yamamoto, H., Sano, M. and Miyake, T., "Preparation of Copper-containing Mesoporous Manganese Oxides and Their Catalytic Performance for CO Oxidation," Appl. Catal. B: Environ., 89(3-4), 420-424(2009). https://doi.org/10.1016/j.apcatb.2008.12.023
  35. Azzam, K. G., Babich, I. V., Seshan, K. and Lefferts, L., "Bifunctional Catalysts for Single-stage Water-gas Shift Reaction in Fuel Cell Applications.: Part 1. Effect of the Support on the Reaction Sequence," J. Catal., 251(1), 153-162(2007). https://doi.org/10.1016/j.jcat.2007.07.010
  36. Liu, W., Sarofim, A. F. and Flytzani-Stephanopoulos, M., "Reduction of Sulfur Dioxide by Carbon Monoxide to Elemental Sulfur over Composite Oxide Catalysts," Appl. Catal. B: Environ., 4(2-3), 167-186(1994). https://doi.org/10.1016/0926-3373(94)00019-0