DOI QR코드

DOI QR Code

Optimization of Alkali Pretreatment from Steam Exploded Barley Husk to Enhance Glucose Fraction Using Response Surface Methodology

  • Jung, Ji Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Ha, Si Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Park, Jai Hyun (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2017.01.19
  • Accepted : 2017.03.01
  • Published : 2017.03.25

Abstract

The optimum alkali pretreatment parameters (reaction time, reaction temperature and potassium hydroxide concentration) for facilitate the conversion into fermentable sugar (glucose) from steam exploded (severity log Ro 2.45) barley husk were determined using Response Surface Methodology (RSM) based on a factorial Central Composite Design (CCD). The prediction of the response was carried out by a second-order polynomial model and regression analysis revealed that more than 88% of the variation can be explained by the models. The optimum conditions for maximum cellulose content were determined to be 201 min reaction time, $124^{\circ}C$ reaction temperature and 0.9% potassium hydroxide concentration. This data shows that the actual value obtained was similar to the predicted value calculated from the model. The pretreated barley husk using acid hydrolysis resulted in a glucose conversion of 94.6%. This research of steam explosion and alkali pretreatment was a promising method to improve cellulose-rich residue for lignocellulosic biomass.

Keywords

References

  1. Ares-Pe, on, I.A., Vila, C., Garrote, G., Paraj, o, J.C. 2011. Enzymatic hydrolysis of autohydrolyzed barley husks. J Chem Technol Biotechnol 86: 251-260. https://doi.org/10.1002/jctb.2511
  2. Belkacemi, K., Turcotte, G., de, Halleux, D., Savoie, P. 1998. Ethanol production from AFEX-treated forages and agricultural residues. Applied Biochemistry and Biotechnology 70-72: 441-462. https://doi.org/10.1007/BF02920159
  3. Beltrame, P.L., Carniti, P., Visciglio, A., Foche, B., Marzetti, A. 1992. Fractionation and bioconversion of steam-exploded wheat straw. Bioresource Technology 39: 165-171. https://doi.org/10.1016/0960-8524(92)90136-L
  4. Broder, J.D., Barrier, J.W., Lee, K.P., Bulls, M.M. 1995. Biofuels system economics. World Resources Review 7(4): 560-569.
  5. Canettieri, E.V., Rocha, G.J.M., Carvalho, J.A., Silva, J.B.A. 2007. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology 98(2): 422-428. https://doi.org/10.1016/j.biortech.2005.12.012
  6. Cardona, C.A., Sánchez, O.J. 2007. Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology 98: 2415-2457. https://doi.org/10.1016/j.biortech.2007.01.002
  7. Carrillo, F., Lis, M.J., Colom, X., Lopez-Mesas, M., Valldeperas, J. 2005. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study. Process Biochemistry 40: 3360-3364. https://doi.org/10.1016/j.procbio.2005.03.003
  8. Chang, V.S., Nagwani, M., Kim, C.H., Holtzapple, M.T. 2001. Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Applied Biochemistry Biotechnology 94: 1-28. https://doi.org/10.1385/ABAB:94:1:01
  9. Chen, Y., Sharma-Shivappa, R.R., Keshwani, D., Chen, C. 2007. Potential of agricultural residues and hay for bioethanol production. Applied Biochemstry Biotechnology 142: 276-290. https://doi.org/10.1007/s12010-007-0026-3
  10. Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M. 2008. Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal 38: 105-109. https://doi.org/10.1016/j.bej.2007.07.012
  11. Donaldson, L.A., Wong, K.K.Y., Mackie, K.L. 1988. Ultrastructure of steam-exploded wood. Wood Science and Technology 22(2): 103-114. https://doi.org/10.1007/BF00355846
  12. Duff, S.J.B., Murray, W.D. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology 55: 1-33. https://doi.org/10.1016/0960-8524(95)00122-0
  13. Fernandez-Bolanos, J., Felizon, B., Heredia, A., Guillen, R., Jimenez, A. 1999. Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresource Technology 68: 121-132. https://doi.org/10.1016/S0960-8524(98)00134-5
  14. Haaland, P.D., Design in Biotechnology, Marcel Dekker, Inc., New York 1989.
  15. Hamelinck, C.N., van, Hooijdonk, G, Faaij, A.PC. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short- middleand long-term. Biomass and Bioenergy 28: 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  16. Han, M.H, Kim, Y., Kim, S.W., Choi, G.W. 2011. High efficiency bioethanol production from OPEFB using pilot pretreatment reactor. Journal of Chemical Technology and Biotechnology 86: 1527-1534. https://doi.org/10.1002/jctb.2668
  17. Heitz, M., Capek-Mdnard, E., Koeberle, P., Gagnd, J., Chornet, E. 1991. Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the stake II technology. Bioresource Technology 35: 23-32. https://doi.org/10.1016/0960-8524(91)90078-X
  18. Hendriks, A.T.W.M., Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100: 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  19. Jeoh, T., Master's thesis, Virginia Tech. University, VA 1998.
  20. Jeong, S.Y., Lee, J.W. 2016. Optimization of pretreatment condition for ethanol production from oxalic acid pretreated biomass by response surface methodology. Industrial Crops and Products 79: 1-6. https://doi.org/10.1016/j.indcrop.2015.10.036
  21. Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology 98: 2034-2042. https://doi.org/10.1016/j.biortech.2006.08.006
  22. Kim, J.W., Mazza, G. 2008. Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives. Industrial Crop and Products 28(3): 346-355. https://doi.org/10.1016/j.indcrop.2008.03.011
  23. Kim, S.H., Holtzapple, M.T. 2006. Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology 97: 583-591. https://doi.org/10.1016/j.biortech.2005.03.040
  24. Li, J., Henriksson, G., Gellerstedt, G. 2007. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology 98(16): 3061-3068. https://doi.org/10.1016/j.biortech.2006.10.018
  25. Lu, X.B., Zhang, Y.M., Yang, J., Liang, Y. 2007. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chemical Engineering and Technology 30(7): 938-944. https://doi.org/10.1002/ceat.200700035
  26. Mandade, P., Bakshi, B.R., Yadav, G.D. 2016. Ethanol from Indian agro-industrial lignocellulosic biomass: an emergy evaluation. Clean Technologies and Environmental Policy 18(8): 2625-2634. https://doi.org/10.1007/s10098-016-1179-y
  27. Montane, D., Farriol, X., Salvado, J., Jollez, P., Chornet, E. 1998. Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Journal of Wood Chemistry and Technology 18(2): 171-191. https://doi.org/10.1080/02773819809349575
  28. Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., Ladisch, M.R. 2005a. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology 96(18): 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  29. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. 2005b. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6): 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  30. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., Braun, R. 2002. Dilute acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology 98-100: 49-58. https://doi.org/10.1385/ABAB:98-100:1-9:49
  31. Parisi, F. 1989. Advances in lignocellulosics hydrolysis and in the utilization of the hydrolysates. Advanced in Biochemical Engineering/Biotechnology 38: 53-87.
  32. Pei, H., Sun, J., Liu, L., Hu, J., Zhang, X., Zhang, J. 2011. Pretreatment of corn stover by acidic electrolyzed water for enhancing hemicellulose degradation. Journal of Biobased Materials and Bioenergy 5(3): 403-408. https://doi.org/10.1166/jbmb.2011.1164
  33. Sanchez, O.J., Cardona, C.A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99(13): 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  34. Sivers, M.V., Zacchi, G. 1995. A techno-economicalcomparison of three processes for the production of ethanol from pine. Bioresource Technology 51(1): 43-52. https://doi.org/10.1016/0960-8524(94)00094-H
  35. Sluiter, A., Hame, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Croker, D. 2006. Determination of Structural Carbohydrates and Lignin in Biomass. NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory Golden, CO:TP-510-42623: 1-14.
  36. Sluiter, A., Hame, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Croker, D. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory Golden, CO: TP-510-42618.
  37. Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 340(1): 97-106. https://doi.org/10.1016/j.carres.2004.10.022
  38. Sun, Y., Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83(1): 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  39. Tran, A.V., Chambers, R.P. 1985. Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776. Biotechnology Letters 7(11): 841-845. https://doi.org/10.1007/BF01025567
  40. Vlasenko, E.Y., Ding, H., Labavitch, J.M., Shoemaker, S.P. 1997. Enzymatic hydrolysis of pretreated rice straw. Bioresource Technology 59: 109-119. https://doi.org/10.1016/S0960-8524(96)00169-1
  41. Watson, N.E., Prior, B.A., Lategan, P.M. 1984. Factors in acid treated bagasse inhibiting ethanol production from d-xylose by Pachysolen tannophilus. Enzyme and Microbial Technology 6(10): 451-456. https://doi.org/10.1016/0141-0229(84)90095-4
  42. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96(18): 1959-1966. https://doi.org/10.1016/j.biortech.2005.01.010
  43. Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. 2010. Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology 101(8): 2900-2903. https://doi.org/10.1016/j.biortech.2009.12.015
  44. Yue, Z.B., Yu, H.Q., Hu, Z.H., Harada, H., Li, Y.Y. 2008. Surfactant-enhanced anaerobic acidogenesis of Canna indica L. by rumen cultures. Bioresource Technology 99(9): 3418-3423. https://doi.org/10.1016/j.biortech.2007.08.010
  45. Zhang, K., Pei, Z., Wang, D. 2016. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology 199: 21-33. https://doi.org/10.1016/j.biortech.2015.08.102
  46. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F. 2006. Production of ethanol from microwave- assisted alkali pretreated wheat straw. Process Biochemistry 41(4): 869-873. https://doi.org/10.1016/j.procbio.2005.10.024