Browse > Article
http://dx.doi.org/10.5658/WOOD.2017.45.2.182

Optimization of Alkali Pretreatment from Steam Exploded Barley Husk to Enhance Glucose Fraction Using Response Surface Methodology  

Jung, Ji Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Ha, Si Young (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Park, Jai Hyun (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Yang, Jae-Kyung (Division of Environmental Forest Science and Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.45, no.2, 2017 , pp. 182-194 More about this Journal
Abstract
The optimum alkali pretreatment parameters (reaction time, reaction temperature and potassium hydroxide concentration) for facilitate the conversion into fermentable sugar (glucose) from steam exploded (severity log Ro 2.45) barley husk were determined using Response Surface Methodology (RSM) based on a factorial Central Composite Design (CCD). The prediction of the response was carried out by a second-order polynomial model and regression analysis revealed that more than 88% of the variation can be explained by the models. The optimum conditions for maximum cellulose content were determined to be 201 min reaction time, $124^{\circ}C$ reaction temperature and 0.9% potassium hydroxide concentration. This data shows that the actual value obtained was similar to the predicted value calculated from the model. The pretreated barley husk using acid hydrolysis resulted in a glucose conversion of 94.6%. This research of steam explosion and alkali pretreatment was a promising method to improve cellulose-rich residue for lignocellulosic biomass.
Keywords
barley husk; steam explosion; alkali pretreatment; response surface methodology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Watson, N.E., Prior, B.A., Lategan, P.M. 1984. Factors in acid treated bagasse inhibiting ethanol production from d-xylose by Pachysolen tannophilus. Enzyme and Microbial Technology 6(10): 451-456.   DOI
2 Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96(18): 1959-1966.   DOI
3 Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. 2010. Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology 101(8): 2900-2903.   DOI
4 Yue, Z.B., Yu, H.Q., Hu, Z.H., Harada, H., Li, Y.Y. 2008. Surfactant-enhanced anaerobic acidogenesis of Canna indica L. by rumen cultures. Bioresource Technology 99(9): 3418-3423.   DOI
5 Zhang, K., Pei, Z., Wang, D. 2016. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology 199: 21-33.   DOI
6 Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F. 2006. Production of ethanol from microwave- assisted alkali pretreated wheat straw. Process Biochemistry 41(4): 869-873.   DOI
7 Ares-Pe, on, I.A., Vila, C., Garrote, G., Paraj, o, J.C. 2011. Enzymatic hydrolysis of autohydrolyzed barley husks. J Chem Technol Biotechnol 86: 251-260.   DOI
8 Belkacemi, K., Turcotte, G., de, Halleux, D., Savoie, P. 1998. Ethanol production from AFEX-treated forages and agricultural residues. Applied Biochemistry and Biotechnology 70-72: 441-462.   DOI
9 Broder, J.D., Barrier, J.W., Lee, K.P., Bulls, M.M. 1995. Biofuels system economics. World Resources Review 7(4): 560-569.
10 Beltrame, P.L., Carniti, P., Visciglio, A., Foche, B., Marzetti, A. 1992. Fractionation and bioconversion of steam-exploded wheat straw. Bioresource Technology 39: 165-171.   DOI
11 Canettieri, E.V., Rocha, G.J.M., Carvalho, J.A., Silva, J.B.A. 2007. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology 98(2): 422-428.   DOI
12 Cardona, C.A., Sánchez, O.J. 2007. Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology 98: 2415-2457.   DOI
13 Carrillo, F., Lis, M.J., Colom, X., Lopez-Mesas, M., Valldeperas, J. 2005. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: kinetic study. Process Biochemistry 40: 3360-3364.   DOI
14 Chang, V.S., Nagwani, M., Kim, C.H., Holtzapple, M.T. 2001. Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Applied Biochemistry Biotechnology 94: 1-28.   DOI
15 Chen, Y., Sharma-Shivappa, R.R., Keshwani, D., Chen, C. 2007. Potential of agricultural residues and hay for bioethanol production. Applied Biochemstry Biotechnology 142: 276-290.   DOI
16 Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M. 2008. Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal 38: 105-109.   DOI
17 Donaldson, L.A., Wong, K.K.Y., Mackie, K.L. 1988. Ultrastructure of steam-exploded wood. Wood Science and Technology 22(2): 103-114.   DOI
18 Duff, S.J.B., Murray, W.D. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology 55: 1-33.   DOI
19 Haaland, P.D., Design in Biotechnology, Marcel Dekker, Inc., New York 1989.
20 Fernandez-Bolanos, J., Felizon, B., Heredia, A., Guillen, R., Jimenez, A. 1999. Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresource Technology 68: 121-132.   DOI
21 Hamelinck, C.N., van, Hooijdonk, G, Faaij, A.PC. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short- middleand long-term. Biomass and Bioenergy 28: 384-410.   DOI
22 Han, M.H, Kim, Y., Kim, S.W., Choi, G.W. 2011. High efficiency bioethanol production from OPEFB using pilot pretreatment reactor. Journal of Chemical Technology and Biotechnology 86: 1527-1534.   DOI
23 Heitz, M., Capek-Mdnard, E., Koeberle, P., Gagnd, J., Chornet, E. 1991. Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the stake II technology. Bioresource Technology 35: 23-32.   DOI
24 Hendriks, A.T.W.M., Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100: 10-18.   DOI
25 Jeoh, T., Master's thesis, Virginia Tech. University, VA 1998.
26 Jeong, S.Y., Lee, J.W. 2016. Optimization of pretreatment condition for ethanol production from oxalic acid pretreated biomass by response surface methodology. Industrial Crops and Products 79: 1-6.   DOI
27 Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology 98: 2034-2042.   DOI
28 Li, J., Henriksson, G., Gellerstedt, G. 2007. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology 98(16): 3061-3068.   DOI
29 Kim, J.W., Mazza, G. 2008. Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives. Industrial Crop and Products 28(3): 346-355.   DOI
30 Kim, S.H., Holtzapple, M.T. 2006. Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology 97: 583-591.   DOI
31 Lu, X.B., Zhang, Y.M., Yang, J., Liang, Y. 2007. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chemical Engineering and Technology 30(7): 938-944.   DOI
32 Mandade, P., Bakshi, B.R., Yadav, G.D. 2016. Ethanol from Indian agro-industrial lignocellulosic biomass: an emergy evaluation. Clean Technologies and Environmental Policy 18(8): 2625-2634.   DOI
33 Montane, D., Farriol, X., Salvado, J., Jollez, P., Chornet, E. 1998. Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Journal of Wood Chemistry and Technology 18(2): 171-191.   DOI
34 Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., Ladisch, M.R. 2005a. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology 96(18): 1986-1993.   DOI
35 Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. 2005b. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96(6): 673-686.   DOI
36 Sivers, M.V., Zacchi, G. 1995. A techno-economicalcomparison of three processes for the production of ethanol from pine. Bioresource Technology 51(1): 43-52.   DOI
37 Neureiter, M., Danner, H., Thomasser, C., Saidi, B., Braun, R. 2002. Dilute acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology 98-100: 49-58.   DOI
38 Parisi, F. 1989. Advances in lignocellulosics hydrolysis and in the utilization of the hydrolysates. Advanced in Biochemical Engineering/Biotechnology 38: 53-87.
39 Pei, H., Sun, J., Liu, L., Hu, J., Zhang, X., Zhang, J. 2011. Pretreatment of corn stover by acidic electrolyzed water for enhancing hemicellulose degradation. Journal of Biobased Materials and Bioenergy 5(3): 403-408.   DOI
40 Sanchez, O.J., Cardona, C.A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99(13): 5270-5295.   DOI
41 Sluiter, A., Hame, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Croker, D. 2006. Determination of Structural Carbohydrates and Lignin in Biomass. NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory Golden, CO:TP-510-42623: 1-14.
42 Sluiter, A., Hame, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Croker, D. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. NREL Laboratory Analytical Procedure. National Renewable Energy Laboratory Golden, CO: TP-510-42618.
43 Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research 340(1): 97-106.   DOI
44 Vlasenko, E.Y., Ding, H., Labavitch, J.M., Shoemaker, S.P. 1997. Enzymatic hydrolysis of pretreated rice straw. Bioresource Technology 59: 109-119.   DOI
45 Sun, Y., Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83(1): 1-11.   DOI
46 Tran, A.V., Chambers, R.P. 1985. Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776. Biotechnology Letters 7(11): 841-845.   DOI