References
- S. A. Smolyak, Candidate dissertation on optimal restoration of functions and functionals of them, Moscow Sate University, Moscow, 1965.
- C. A. Michelli and T. J. Rivlin, Optimal estimation in approximation theory, A Survey of Optimal Recovery, 1977, 1-54.
- C. A. Michelli and T. J. Rivlin, Lectures on optimal recovery, Numerical Analysis 1129, Springer, Berlin/Hidelberg, 1984.
- J. F. Traub and H. Wozniakowski, A general theory of optimal algorithms, Academic Press, New York, 1980.
- K. Yu.Osipenko, Optimal interpolation of analytic functions, Mathematical Notes of the Academy of Sciences of the USSR, 12(4) (1972), 712-719. https://doi.org/10.1007/BF01093679
- G. G. Magaril-Il'yaev and K. Yu. Osipenko, Hardy-Littlewood-Polya inequality and recovery of derivatives from inaccurate data, Doklady Mathematics, 83(3) (2011), 337-339. https://doi.org/10.1134/S1064562411030203
- G. G. Magaril-Il'yaev and K. Yu. Osipenko, Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error, Sbornik: Mathematics, 193 (2002), 387-407. https://doi.org/10.1070/SM2002v193n03ABEH000637
- A. Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics, 71(1) (1949), 80-91. https://doi.org/10.2307/2372095
- S. M. Nikol'skii, Quadrature formulas, Nauka, Moscow, 1988.
- F. Natterer, The mathematics of computerized tomography, John Wiley & Sons, Stuttgart, 1986.
- B. F. Logan and L. A. Shepp, Optimal reconstruction of a function from its projections, Duke Mathematical Journal, 42(4) (1975), 645-659. https://doi.org/10.1215/S0012-7094-75-04256-8
- A. J. Degraw, Optimal recovery of holomorphic functions from inaccurate information about radial integration, American Journal of Computational Mathematics, 2 (2012), 258-268. https://doi.org/10.4236/ajcm.2012.24035
- T. E. Bagramyan, Optimal recovery of harmonic functions from inaccurate information on the values of the radial integration operator, Vladikavkazskii Matematicheskii Zhurnal, 14 (2012), 22-36.
- T. E. Bagramyan, Optimal recovery of harmonic functions in the ball from inaccurate information on the Radon transform, Mathematical Notes, 98(1) (2015), 195-203. https://doi.org/10.1134/S0001434615070196
- T. E. Bagramyan, The optimal recovery of a function from an inaccurate information on its k-plane transform, Inverse Problems, 32(6) (2016), 13-27.