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OPTIMAL INVERSION OF THE NOISY RADON TRANSFORM ON CLASSES
DEFINED BY A DEGREE OF THE LAPLACE OPERATOR

TIGRAN BAGRAMYAN

DMC R&D CENTER, SAMSUNG ELECTRONICS, SOUTH KOREA
E-mail address: t .bagramyan@me . com

ABSTRACT. A general optimal recovery problem is to approximate a value of a linear operator
on a subset (class) in linear space from a value of another linear operator (called information),
measured with an error in given metric. We use this formulation to investigate the classical
computerized tomography problem of inversion of the noisy Radon transform.

1. INTRODUCTION

In many applied and theoretical problems one needs to recover a function (functional or
operator) from the information, which can be incomplete or given with an error. Such problems
are investigated in optimal recovery theory - a modern branch of approximation theory, which
has its roots in works of A.N. Kolmogorov and notion of Kolmogorov widths. The problem of
the optimal recovery first appeared in [1] and has been developed in [2—4] and lately in [5-7]
and many other works. The general problem is to find the best approximation of a linear
operator U : X — Z value on a given set W C X from values of another linear operator
I : X — Y (called information) given with an error.

U
wcX —» 7

Y

On the diagram above X is a linear space and Y,Z are normed linear spaces. W is a subset of
X, U is a linear operator from X into Z (the feature operator) and [ is a linear operator from
X into Y (the information operator). An arbitrary mapping m : ¥ — Z is called a method of
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recovery. Suppose, that instead of the element Ix we are given its approximation y € Y with
an error 0, i.e. ||[[z — y|| < J. Each method of recovery m produces an error of the method

e(8,m) = sup{|[Uz — my|| : z € W, |[ Iz — y]| < 6}
and the exact lower bound of these errors

E(0) = i%fe((s, m)

is called the error of the optimal recovery. The method of recovery m is optimal if the error of
the optimal recovery F(9) is attained by the error e(d, m) of m, i.e. e(d, m) = E(¢). Particular
cases usually use information in a form of a linear functional or an operator that maps function
to the set of it’s values in a number of nodes, it’s Fourier transform, Fourier coefficients or the
function itself. This covers a large set of numerical methods, such as quadrature formulas [8,9],
optimal interpolation and approximation [5, 6], differential equations solutions recovery, signal
reconstruction [7], optimal state estimation and others. In the present paper we consider the
widely used in the computerized tomography theory Radon transform - an operator, that maps
a function on R? to the set of it’s integrals over all hyperplanes. For the particular classes of
functions there exist different inversion formulas that allow to produce an exact reconstruction
(see [10]). Following the optimal recovery approach we consider the case when the Radon
transform is measured inaccurately, with a known error ¢ in the mean square metric. In the
optimal recovery theory operators of this kind have been introduced in [11] (example 3.2),
where for a function on R? the information is the Radon transform being measured in a finite
number of directions, and in papers [12, 13] where the radial integration operator is considered
on the classes of analytic and harmonic functions. In paper [14] we have considered the optimal
recovery of the Radon transform acting in the Hardy space of harmonic functions in a unit ball.
Paper [15] has generalized this problem to the Laplacian degree recovery on classes defined
by another degree of the same operator from inaccurately measured k-plane transform. Here
we investigate the particular case of this problem where information is given by the Radon
transform (k = d — 1) and we look to reconstruct the function itself. We present explicit
formulas for the optimal methods of recovery and complete proofs of the main results.

2. MAIN RESULTS

We define the Radon transform in a standard way as an operator of integration along the
hyperplanes in space
Rf0.5)= [ )iz,
x0=s
where s € R, § € S*"! and z € R?. The Hilbert space Ly(Z) of square integrable functions on
cylinder Z = RxS% ! is produced by a scalar product (¢, ) 1., (z) = Jsa—1 [ 9(6,5)(6, s)dsdf.
The Fourier transfrom is defined by

7€) = (2m)2 / ¢ f (2 da

Rd
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and when applied to g(f, s) (we use notation gy(s) = g(0, s)) it acts on the second variable.
The Radon transform and the Fourier transform are related by the so-called projection-slice
theorem [10].

Theorem 2.1. If f € L1(R?), then
(Rof)(0) = (2m)2f(08), o €R, Rof(s) = Rf(6,s).

For o > 0 define the degree of the Laplace operator by formula

—
~

((=A)>2f) (&) = [€]* (&)
on the set of functions f € Lo(R?) that satisfy the condition |¢|*f(¢) € La(R?). Using a
shorter notation A = (—A)'/2 we define the class
W = {f € Ly(R?) : IA“fllLymey <1 RS € La(2)}-

As we work with the inaccurate information we assume that for a function Rf we know an
approximation g € Ly(Z) such that

IRf = gllyz) <6, 6>0.

On this information we want to recover function f as an element of Ly(R?). We consider all
possible methods or recovery — arbitrary maps m : La(Z) — Lo(R?). For every method of
recovery m define its error e(d, m) by

e(d,m) = sup I1f = m()] L, (ra
I1Rf=gllry(2)<o
and the error of the optimal recovery

E(5) = inf s, m).
( ) m:Lg(Zl)n—>L2(Rd) 6( m) (21)

We’re going to solve problem (2.1) both by finding the extremal value — the error of the
optimal recovery, and extremal elements — the optimal methods of recovery. To formulate the
main result we introduce the following definitions for functions ¢(o), y(c) and constants Aj,
)\22

t(O’) = (27T)1_d0-2a+d_1X[0,oo)(0-)7 y(o) = (ZW)I_dO—d_IX[O,oo) (0)7 o €R, (2.2)

~ 2a(1—d) d—1
AN = (27m)204d—1 ——
1= (2m) 20 +d — 1

Theorem 2.2. The error of the optimal recovery is given by

= i) X
E(9) = m = (27r)2ai7d515ﬁ

and the following methods are optimal:

ma(9)(00) = (2m) =D %a(a)go(0), o€ [0,00), 6esi, 2.4)

4o ~ 2a(l—d) 200 2(1—d)
02atd=1 )9 = (2m)Zatdl ————(2atd-1, 23
2 = (2m) 2a04+d —1 23)
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where
o o/ XA
a(o) ()\175(0) + A2 *ele) )\175( + )\2\/ ' 2=yl )) Xioo) () 2

€ is an arbitrary function satisfying |||/ ) < L.

The optimal methods are designed as a set of filters a(o) (for all suitable functions ¢) that
are applied to the Fourier transform of the information g. A reconstructed function f is then
provided by application of the inverse Fourier transform. In the case of an accurate informa-
tion (§ = 0) the exact reconstruction method is given by the projection-slice Theorem 2.1,
i.e. a(o) = 1. Filter a(o) is used to suppress certain frequencies and in this sense defines
the amount of useful information for the optimal recovery when the information is measured
inaccurately. Particularly when a(o) can be chosen equal to 0 the corresponding volume of in-
formation is unnecessary as the optimal methods may not use it. On the other hand when a(o)
can be equal to 1 the information doesn’t need to be filtered. The following corollary shows
that for sufficiently small o information gg(o) doesn’t need to be filtered and, on the contrary,
for large o the information is useless, as it has no effect on the error of the optimal recovery.

Corollary 2.3. In the conditions of Theorem 2.2 the following filters produce optimal methods
of recovery

1
1 ,0< o< (2mAsT,
— X \//\]_)\20’ _ d 1 2;
a(o) 7X1t(03+x2 +e(o )/\1t e \/t )AL+ Ao — y(o) (27T))\ 3 <o <A
0 NP

€ is an arbitrary function satisfying ||| 1. r) < 1.

An obvious observation here is that the methods from Corollary 2.3 provide the reconstruc-
tion as a bandlimited function. Another application of Theorem 2.2 is a new inequality for the
norm of a function and the norms of the Radon transform and the Laplacian degree.

Corollary 2.4. The following exact inequality takes place for a function f € Lo(R?) such that
€17 f(€) € La(RY), @ > 0, Rf € La(2):

11l s ray < (2m)Eosat IHRfHMd 1||A°‘f\|2“2+§d)1

3. PROOFS
3.1. Proof of Theorem 2.2. Consider the extremal problem
1712, e = sup, A3 gy < Lo [RFIZ, (2 < 6%

which is usually called the dual problem to (2.1) in the optiml recovery theory. Its solution
gives the lower bound for F(¢). Indeed, for an arbitrary method m:
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e(6,m) = sup 1f = m(9)l L,me
|Rf=9gllLy(z)<6
= sup |f = m(0)]|L,(ra
few
IRf | Ly(z)<O
N 1f = m0)[| Ly mey + || = f — m(0)|| Ly ey
T few 2
| RSl Ly(2)<d
2 sup [ f1l £y (ray-
few
IRy (z)<O

The inequalities above are true due to the central symmetry of the set /. Hence

E@) > sup | fllL,me-
few
|RflLy(z)<o

We use Theorem 2.1 to transform the functional and the constraints in the dual problem as
follows:

2 72 _ > d—1 Y 2
10y = W = [ o™ [ IFiot)Pa0de,
1A 1% ey = AT ey = / EP1F(©)Pde = / gt /S |f(o0)asdo,

IRFIZ, 2 / /|Rf9 9| dsd@—/ /!Rgf )2dodo
= (2m)¢ ! /S . /R |F(00)2dodf = (2r)%! /R /S . |F(c0)|?dodo.

If we denote [4-: |f(c8)|2d6do = dy(c) the dual problem can be presented as

(e} o0
/ % Ydu — sup, / o2td=lg, <1, (2m)d! / dp < 62, (3.1)
0 0 R

Now we consider (3.1) to be a new extremal problem, where dyu (o) is an arbitrary measure.
Obviously its solution isn’t less than the solution of the original dual problem. To solve the
dual problem we will present the solution of (3.1) and the sequence of admissible functions,
that bring the same value in the dual problem. Consider the Lagrange function of (3.1):

L(dji, M, do) = A1 — Ag62 + (2m)31 /R<)\1t(o) g — y(o))du.
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If there exist the Lagrange multipliers Xl,}:Q > 0 and measure El\/;, admissible in (3.1), that
minimizes the Lagrange function, i.e.

L(d Xo) = L(dp, M, \
52;% (dps, M, o) = Lidp, A1, Aa),

~ o — ~ —
A1 (/ o2otd=lq, — 1> + A2 ((271')61_1 / dp — 62> =0
0 R

(complementary slackness condition), then gl\/; brings maximum to (3.1). That statement easily
follows from

and satisfies

o0 (o]
d—173 T35 : BN : d—1
— dpu = L(dp, A\, o) = min L(du, A1, A2) < min — du.
/0 o H ( Hy AL, 2) d,u120 ( Hy A1, 2) X d,u1>0 /0 o 1%
fOOO 0’2a+d71du<1

(27")d71 fIR dp<6?

Where the last inequality holds due to
o~ ~ oo o~ ~
L(dp, A, Xo) < —/ o ldu as A, Ag > 0.
0

We shall present such A1, A\2 and El\/; Equations (2.2) define function y(t) by

2a(1—d) d—1

y(t) = (277) 2a+d—1t2a+d-1, ¢t >0

which is concave for & > 0. The equation of the tangent line to y(¢) at a point 1/52 (the

corresponding value of o is 0* = [(2m)4~ 16~ ]1/(2°‘+d Dyisy = Alt + )\2, where )\1, )\2 are

defined in (2.3). Thus, we have A 1£(c) + Az — y(0) = 0 and L(dp, A1, Aa) = — A1 — Agd2.
Consider a measure supported at ¢* (i.e. the J-function at this point)

— 52
d/.L == W&(O’ — 0 )

It’s admissible in (3.1), satisfies the complementary slackness condition and minimizes the
Lagrange function, as L(d,u, )\1, )\2) = —)\1 )\252 Thus, it brings the extremum in problem
(3.1), which solution is equal to A\; + 262, By a standard approximation of the §-function it’s
easy to show that the solution of the dual problem is the same as in (3.1). And we obtain a

lower bound for the error of the optimal recovery E(8) = 1/ A + A262.
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Now we show, that the error of the methods (2.4) is equal to the achieved estimate. We have
”f—ma@)”QLQ(Rd ”f ma( )HLQ(Rd)
= [ [ R — en) o)) s

:/_ /ooo'dl‘a(o')(2ﬂ')12d (g}(a)—(zn)%}(;g))
sd-1 Jo
+ f(o0)(a(o) — 1)2dodb.

Transform this expression using the Cauchy-Schwarz inequality |zy| < |z||y| applied to vec-
tors

1-d a(0) e 2a( (o) —

N \K |
v= (@00 - @2 Fo0)) V3o ™4 i Flo0)).

We obtain

1f = ma(9) 7,z

[e.o]

< A(e) (a* X F(00) + |Gi) — (2m) @D/ f(00)PXs ) derdo,
si-1.Jo
where
Alo) = o1 <(2W)1—da2~(0) 4 gotd-1 (a(o) ~ 1)2> _
A2 A1

Condition (2.5) is equivalent to A(c) < 1, 0 € [0,00) and other terms are estimated by the
constraints of the class W, which leads to || f — mq(g) H%Q(Rd) < A1+ X262, Thus we end with
the proof.

3.2. Proof of Corollary 2.3. As we’ve seen in the proof of the Theorem 2.2 the condition on
a(o) for the method m,(g) to be optimal is A(c) < 1. Put a(o) = 1 to this inequality and
1

solve it for o to obtain o < 27&5? . By the analogue put a(c) = 0, then A(c) < 1 is true
when o > )\2(")

3.3. Proof of Corollary 2.4. From the solution of the dual problem in Theorem 2.2 it follows,

a(l—d) 20
that ||v]|p,may < E(J) = (27)2eFd-1§2a74-T, when the following constraints are satisfied:
| Rv[|1,(z) = ¢ and [|A* UHL2 ey = 1. So the expression can be presented as |[v]| 1, gy <

( L
(27r)m52a+d 1||Rv\|2°‘+d . Now we put v(z) =

(2) # 0 to obtain

/(@)
= T,/

2(a) d—1
1l o (may < (2m)ara 1 lHRin‘;*d AN may -
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4. NUMERICAL EXPERIMENT

To emphasize the practical applications of the achieved results, we bring a numerical exam-
ple. We use standard Shepp-Logan phantom smoothed with Gaussian kernel and approximate
its Radon transform with (0, s) = Rf(0,5) + 0 - e(0, s)/|le|| 1, (z), where (0, 5) is Gaussian
distributed noise with zero mean and standard deviation 1 and § = noise level * || Rf||1_ (z)-
We apply the optimal method (¢(o) = 1) on noise level of 0.05 and compare it to the recovery
by standard FBP algorithm (Ram-Lack filter) and FBP with Hamming filter. Recovery results
are presented in Fig. 1.

0
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FIGURE 1. From left to right: original phantom, reconstruction by the optimal
method, reconstruction by FBP (Ram-Lak filter), reconstruction by FBP with
Hamming filter.
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