DOI QR코드

DOI QR Code

Sorption Behavior and Mechanism of Phosphate onto Natural Magnesite

  • Xie, Fazhi (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Hu, Tingting (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Sheng, Dandan (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Li, Haibin (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Wang, Xuechun (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Xie, Zhiyong (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Li, Guolian (School of Environment and Energy Engineering, Anhui Jianzhu University) ;
  • Han, Xuan (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Xie, Wenjie (School of Materials Science and Chemical Engineering, Anhui Jianzhu University) ;
  • Sun, Mei (School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
  • Received : 2015.10.10
  • Accepted : 2017.03.03
  • Published : 2017.03.27

Abstract

Removal of phosphate from environmental water has become more important to prevent eutrophication. In the present study, sorption behavior of phosphate onto magnesite was investigated under different conditions. The optimum pH of phosphate adsorption was determined to be 6.0. The adsorption capacity was found to decrease with increasing temperature, which indicates that a low temperature was beneficial for phosphate adsorption. The sorption capacity for phosphate was found to be 10.2 mg/g at an initial concentration of 100 mg/L and a dose of 2 g/L. The first order kinetic equation and Freundlich isotherm model fit the data well. Phosphate adsorption on magnesite was explained by electrostatic attraction and weak physical interactions.

Keywords

References

  1. B. Li and M. T. Brett, Water Res., 46, 837 (2012). https://doi.org/10.1016/j.watres.2011.11.055
  2. T. Liu, K. Wu and L. Zeng, J. Hazard. Mater., 217, 29 (2012).
  3. B. Saha, S. Chakraborty and G. Das, J. Colloid Interf. Sci., 331, 21 (2009). https://doi.org/10.1016/j.jcis.2008.11.007
  4. J. B. Xiong, Z. L. He, Q. Mahmood, D. Liu, X. Yang and E. Islam, J. Hazard. Mater., 152, 211(2008). https://doi.org/10.1016/j.jhazmat.2007.06.103
  5. L. G. Yan, Y. Y. Xu, H. Q. Yu, X. D. Xin, Q. Wei and B. Du, J. Hazard. Mater., 179, 244 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.086
  6. I. Kipcak and M. Ozdemir, Chem. Eng. J., 189, 68 (2012).
  7. M. Wang, L. Liao, X. Zhang and Z. Li, Appl. Clay Sci., 67, 164 (2012).
  8. N. Gence and H. Ozda , Int. J. Miner. Process., 43, 37 (1995). https://doi.org/10.1016/0301-7516(94)00047-4
  9. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi and T. Hirotsu, J. Colloid Interf. Sci., 298, 602 (2006). https://doi.org/10.1016/j.jcis.2005.12.054
  10. A. Gok, M. K. Gok, Y. S. Asci and M. Lalikoglu, Fluid Phase Equilibr., 372, 15 (2014). https://doi.org/10.1016/j.fluid.2014.03.023
  11. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 156, 2 (2010). https://doi.org/10.1016/j.cej.2009.09.013
  12. C. J. Zhou, Q. L. Wu, T. Z. Lei and L. L. Negulescu, Chem. Eng. J., 251, 17 (2014). https://doi.org/10.1016/j.cej.2014.04.034
  13. S. Karaca, A. Gurses, M. Ejder and M. Ac ikyildiz, J. Colloid Interf. Sci., 277, 257 (2004). https://doi.org/10.1016/j.jcis.2004.04.042
  14. S. H. Yeom and K. Y. Jung, J. Ind. Eng. Chem., 15, 40 (2009). https://doi.org/10.1016/j.jiec.2008.08.014
  15. D. S. Soejoko and M. O. Tjia, J. Mater. Sci., 38, 2087 (2003). https://doi.org/10.1023/A:1023566227836