DOI QR코드

DOI QR Code

Synthesis of Terephthalate Intercalated Zn-Al Layered Double Hydroxides Using AZO Thin Film

AZO박막을 이용한 Terephthalate가 삽입된 Zn-Al 층상 이중 수산화물의 합성

  • Park, Ki-Tae (Advanced Electronic Circuit Substrate Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Advanced Electronic Circuit Substrate Engineering, Chungnam National University)
  • 박기태 (충남대학교 차세대기판학과) ;
  • 윤순길 (충남대학교 차세대기판학과)
  • Received : 2016.12.12
  • Accepted : 2017.02.14
  • Published : 2017.03.27

Abstract

In this paper, synthesis of terephthalate intercalated Zn-Al: Layered double hydroxides (LDHs) was studied. We designed freestanding Zn-Al: carbonate LDH nanosheets for a facile exchange technique. The as-prepared Zn-Al carbonate LDHs were converted to terephthalate intercalated Zn-Al:LDHs by ion exchange method. Initially, Al-doped ZnO (AZO) thin films were deposited on p-Si (001) by facing target sputtering. For synthesis of free standing carbonate Zn-Al:LDH, we dipped the AZO thin film in naturally carbonated water for 3 hours. Further, Zn-Al: carbonate LDH nanosheets were immersed in terepthalic acid (TA) solution. The ion exchange phenomena in the terephthalate assisted Zn-Al:LDH were confirmed using FT-IR analysis. The crystal structure of terephthalate intercalated Zn-Al:LDH was investigated by XRD pattern analysis with different mole concentrations of TA solution and reaction times. The optimal conditions for intercalation of terephthalate from carbonated Zn-Al LDH were established using 0.3 M aqueous solution of TA for 24 hours.

Keywords

References

  1. M. Ogawa and K. Kuroda, Chem. Rev., 95, 399 (1995). https://doi.org/10.1021/cr00034a005
  2. S. P. Newman and W. Jones, New J. Chem., 22, 105 (1998). https://doi.org/10.1039/a708319j
  3. A. I. Khan and D. O'Hare, J. Mater. Chem., 12, 3191 (2002). https://doi.org/10.1039/B204076J
  4. V. Rives and M. A. Ulibarri, Coord. Chem., Rev., 181, 61 (1999). https://doi.org/10.1016/S0010-8545(98)00216-1
  5. S. M. Xu, J. Phys. Chem. C, 119, 18823 (2015). https://doi.org/10.1021/acs.jpcc.5b01819
  6. L. Zhang, Y. Chen, Z. Zhang and C. Lu, Sens. Actuator B, 193, 752 (2014). https://doi.org/10.1016/j.snb.2013.12.036
  7. G. Fan, F. Li, D. G. Evans and X. Duan, Chem. Soc. Rev., 20, 7040 (2014).
  8. J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker and T. Toops, Appl. Catal., B, 82, 120 (2008). https://doi.org/10.1016/j.apcatb.2008.01.010
  9. S. Gago, M. Pillinger, T. M. Santos and I. S. GonCalves, Ceram.-Silik., 48, 155 (2004).
  10. B. Schwenzer, K. M. Roth, J. R. Gomm, M. Murr and D. E Morse, J. Mater. Chem., 16, 401 (2006). https://doi.org/10.1039/B512900A
  11. Y. D. Huh, J. M. Ryu and Y, J, Park., J. Korean Chem. Soc., 44, 395 (2000).
  12. H. S. Shin, M. J. Kim, S. Y. Nam and H. C. Moon, Water Sci. Tech., 34, 161 (1996).
  13. M. Meyn, K. Beneke and G. Lagaly, Inrorg. Chem., 29, 5201 (1990). https://doi.org/10.1021/ic00351a013
  14. Y.-W. Huang and S. Cheng., J. Mater. Chem. A, 2, 13452 (2014). https://doi.org/10.1039/C4TA01796J