DOI QR코드

DOI QR Code

Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects

  • Received : 2016.12.28
  • Accepted : 2017.01.25
  • Published : 2017.03.25

Abstract

In this paper, nonlinear vibration of embedded nanocomposite concrete is investigated based on Timoshenko beam model. The beam is reinforced by with agglomerated silicon dioxide (SiO2) nanoparticles. Mori-Tanaka model is used for considering agglomeration effects and calculating the equivalent characteristics of the structure. The surrounding foundation is simulated with Pasternak medium. Energy method and Hamilton's principal are used for deriving the motion equations. Differential quadrature method (DQM) is applied in order to obtain the frequency of structure. The effects of different parameters such as volume percent of SiO2 nanoparticles, nanoparticles agglomeration, elastic medium, boundary conditions and geometrical parameters of beam are shown on the frequency of system. Numerical results indicate that with increasing the SiO2 nanoparticles, the frequency of structure increases. In addition, considering agglomeration effects leads to decrease in frequency of system.

Keywords

References

  1. Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York, U.S.A.
  2. Ding, F.X., Liu, J., Liu, X.M., Guo, F.Q. and Jiang, L.Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., 20(6), 1369-1389. https://doi.org/10.12989/scs.2016.20.6.1369
  3. El-Helou, R.G. and Aboutaha, R.S. (2015), "Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns", Comput. Concrete, 16(2), 245-260. https://doi.org/10.12989/cac.2015.16.2.245
  4. Guneyisi, E., Gesoglu, M., Azez, O.A. and Oz, H.O. (2015), "Physico-mechanical properties of self-compacting concrete containing treated cold-bonded fly ash lightweight aggregates and SiO2 nano-particle", Constr. Build. Mater., 101, 1142-1153. https://doi.org/10.1016/j.conbuildmat.2015.10.117
  5. Heidarzadeh, A., Kolahchi, R. and Rabani, B.M. (2016), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", J. Civil Eng., 1-8.
  6. Hind, M.K., Mustafa, O., Talha, E. and Abdolbaqi, M.K. (2016), "Flexural behavior of concrete beams reinforced with different types of fibers", Comput. Concrete, 18(5), 999-1018. https://doi.org/10.12989/cac.2016.18.5.999
  7. Ibraheem, O.F., Abu Bakar, B.H. and Johari, I. (2014), "Fiber reinforced concrete L-beams under combined loading", Comput. Concrete, 14(1), 1-18. https://doi.org/10.12989/cac.2014.14.1.001
  8. Ibraheem, O.F., Abu Bakar, B.H. and Johari, I. (2015), "Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: An experimental study", Struct. Eng. Mech., 54(1), 1-17. https://doi.org/10.12989/sem.2015.54.1.001
  9. Jafarian, A.A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  10. Jalala, M., Fathi, M. and Farzad, M. (2013), "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self-compacting concrete", Mech. Mater., 61, 11-27. https://doi.org/10.1016/j.mechmat.2013.01.010
  11. Khalaj, G. and Nazari, A. (2012), "Modeling split tensile strength of high strength self-compacting concrete incorporating randomly oriented steel fibers and SiO2 nanoparticles", Compos. Part B: Eng., 43(4), 1887-1892. https://doi.org/10.1016/j.compositesb.2012.01.068
  12. Khoshakhlagh, A., Nazari, A. and Khalaj, G. (2012), "Effects of Fe2O3 nanoparticles on water permeability and strength assessments of high strength self-compacting concrete", J. Mater. Sci. Technol., 28(1), 73-82. https://doi.org/10.1016/S1005-0302(12)60026-7
  13. Kim, S.H. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforcedrnpolymer (CFRP) strengthened reinforced concrete beams", Comput. Concrete, 1(4), 401-416. https://doi.org/10.12989/cac.2004.1.4.401
  14. Kolahchi, R. and Moniribidgoli, A.M. (2016b), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  15. Kolahchi, R., Rabani, B.M., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  16. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  17. Le, V.P.N., Bui, D.V., Chu, T.H.V., Kim, I.T., Ahn, J.H. and Dao, D.K. (2016), "Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: An experimental study", Struct. Eng. Mech., 60(6), 1001-1019. https://doi.org/10.12989/sem.2016.60.6.1001
  18. Nazari, A. and Riahi, S. (2010), "The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete", Mater. Sci. Eng.: A, 528(2), 756-763. https://doi.org/10.1016/j.msea.2010.09.074
  19. Safari, B.B., Kolahchi, R. and Rabani, B.M. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  20. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845. https://doi.org/10.12989/sem.2016.58.5.825
  21. Zamanian, M., Kolahchi, R. and Rabanim, B.M. (2016), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/WAS.2017.24.1.043

Cited by

  1. Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
  2. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  3. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2017, https://doi.org/10.12989/sem.2018.66.1.061
  4. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2017, https://doi.org/10.12989/sss.2018.21.4.397
  5. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2017, https://doi.org/10.12989/anr.2018.6.2.147
  6. Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods vol.21, pp.6, 2017, https://doi.org/10.12989/cac.2018.21.6.717
  7. Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials vol.27, pp.6, 2017, https://doi.org/10.12989/scs.2018.27.6.777
  8. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2017, https://doi.org/10.12989/scs.2018.28.1.013
  9. Technical and economical assessment of applying silica nanoparticles for construction of concrete structures vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.117
  10. The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2017, https://doi.org/10.12989/sem.2018.67.2.115
  11. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2017, https://doi.org/10.12989/sem.2018.67.3.291
  12. Soil foundation effect on the vibration response of concrete foundations using mathematical model vol.22, pp.2, 2017, https://doi.org/10.12989/cac.2018.22.2.221
  13. Soil foundation effect on the vibration response of concrete foundations using mathematical model vol.22, pp.2, 2017, https://doi.org/10.12989/cac.2018.22.2.221
  14. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  15. Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory vol.22, pp.3, 2017, https://doi.org/10.12989/sss.2018.22.3.327
  16. Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2017, https://doi.org/10.12989/eas.2018.15.4.361
  17. Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
  18. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2017, https://doi.org/10.12989/was.2018.27.4.269
  19. Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
  20. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  21. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2017, https://doi.org/10.12989/was.2019.28.1.019
  22. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2017, https://doi.org/10.12989/was.2019.28.1.049
  23. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2017, https://doi.org/10.12989/sem.2019.69.5.511
  24. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2017, https://doi.org/10.12989/sem.2019.69.6.637
  25. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2017, https://doi.org/10.12989/scs.2019.31.5.503
  26. The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid vol.9, pp.1, 2017, https://doi.org/10.12989/acc.2020.9.1.103
  27. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2017, https://doi.org/10.12989/csm.2020.9.3.281
  28. Multi-scale Approach from Atomistic to Macro for Simulation of the Elastic Properties of Cement Paste vol.44, pp.3, 2017, https://doi.org/10.1007/s40996-019-00288-6
  29. Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.285
  30. Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory vol.37, pp.1, 2017, https://doi.org/10.12989/scs.2020.37.1.099