References
- Edmonds, Allan L., The center conjecture for equifacetal simplices, Adv. Geom. 9 (2009), no. 4, 563-576. https://doi.org/10.1515/ADVGEOM.2009.027
- Johnson, R. A., Modem Geometry, Houghton-Miin Co., New York, 1929.
- Kaiser, Mark J., The perimeter centroid of a convex polygon, Appl. Math. Lett. 6(1993), no. 3, 17-19. https://doi.org/10.1016/0893-9659(93)90025-I
- Khorshidi, B., A new method for nding the center of gravity of polygons, J. Geom. 96(2009), no. 1-2, 81-91. https://doi.org/10.1007/s00022-010-0027-1
- Kim, D.-S. and Kim, D. S., Centroid of triangles associated with a curve, Bull. Korean Math. Soc. 52(2015), 571-579. https://doi.org/10.4134/BKMS.2015.52.2.571
- Kim, D.-S. and Kim, Y. H., On the Archimedean characterization of parabolas, Bull. Korean Math. Soc., 50 (2013), no. 6, 2103-2114. https://doi.org/10.4134/BKMS.2013.50.6.2103
- Kim, D.-S., Kim, W., Lee, K. S. and Yoon, D. W., Various centroids of polygons and some characterizations of rhombi, Commun. Korean Math. Soc., to appear.
- Kim, D.-S. and Kim, Y. H. and Park, S., Center of gravity and a characterization of parabolas, Kyungpook Math. J. 55(2015), 473-484. https://doi.org/10.5666/KMJ.2015.55.2.473
- Kim, D.-S., Lee, K. S., Lee, K. B., Lee, Y. I., Son, S., Yang, J. K. and Yoon, D. W., Centroids and some characterizations of parallelograms, Commun. Korean Math. Soc., 31 (2016), no. 3, 637-645. https://doi.org/10.4134/CKMS.c150165
- Krantz, Steven G., A matter of gravity, Amer. Math. Monthly 110(2003), 465-481. https://doi.org/10.2307/3647903
- Krantz, Steven G., McCarthy, John E. and Parks, Harold R., Geometric char- acterizations of centroids of simplices, J. Math. Anal. Appl. 316(2006), no. 1, 87-109. https://doi.org/10.1016/j.jmaa.2005.04.046
- Stein, S., Archimedes. What did he do besides cry Eureka?, Mathematical Association of America, Washington, DC, 1999.