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PERIMETER CENTROIDS AND CIRCUMSCRIBED

QUADRANGLES

Seung Ho Ahn, Jeong Sook Jeong and Dong-Soo Kim∗

Abstract. For a quadrangle P , we consider the centroid G0 of the
vertices of P , the perimeter centroid G1 of the edges of P and the
centroid G2 of the interior of P , respectively. If G0 is equal to G1

or G2, then the quadrangle P is a parallelogram. We denote by M
the intersection point of two diagonals of P .

In this note, first of all, we show that if M is equal to G0 or
G2, then the quadrangle P is a parallelogram. Next, we investigate
various quadrangles whose perimeter centroid coincides with the
intersection point M of diagonals. As a result, for an example, we
show that among circumscribed quadrangles rhombi are the only
ones whose perimeter centroid coincides with the intersection point
M of diagonals.

1. Introduction

For a quadrangle P , we consider the centroid G0 of the vertices of
P , the centroid G1 of the edges of P and the centroid G2 of the interior
of P , respectively. The centroid G1 of the edges of P is also called the
perimeter centroid of P ([3]). See also [2]. Then we have the following
([9]):

Proposition 1.1. Let P denote a quadrangle. Then the following are
equivalent.

(1) P satisfies G0 = G1.

(2) P satisfies G0 = G2.

(3) P is a parallelogram.
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If we denote by M the intersection point of two diagonals of P , then
we have the following. For a proof, see Section 2.

Proposition 1.2. Let P denote a quadrangle. Then the following are
equivalent.

(1) P satisfies G0 = M .

(2) P satisfies G2 = M .

(3) P is a parallelogram.

The perimeter centroid of a parallelogram also coincides with the in-
tersection point of two diagonals. Hence, it is quite natural to ask the
following:

Question 1.3. Is G1 = M a characteristic property of parallelograms?

In this regard, recently in [7], the following characterizations were
established.

Proposition 1.4. Suppose that P denotes a convex quadrangle whose
two diagonals are perpendicular to each other. We denote by M the
intersection point of diagonals of P . Then the following are equivalent.

(1) P satisfies G0 = M .

(2) P satisfies G1 = M .

(3) P satisfies G2 = M .

(4) P is a rhombus.

In this note, we investigate various quadrangles whose perimeter cen-
troid coincides with the intersection point M of diagonals. As a result,
in Section 3 we prove the following characterization theorems.

Theorem 1.5. For a trapezoid P , the following are equivalent.

(1) P satisfies G1 = M .

(2) P is a parallelogram.

Theorem 1.6. For a quadrangle P with a pair of opposite edges of
equal length, the following are equivalent.

(1) P satisfies G1 = M .
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(2) P is a parallelogram.

In Section 4, first of all, we prove

Theorem 1.7. For a circumscribed quadrangle P , the following are
equivalent.

(1) P satisfies G1 = M .

(2) P is a parallelogram.

(3) P is a rhombus.

Finally, in Section 4, we state some characterization theorems which
can be proved in a similar argument as in the proof of Theorem 1.7.

In case P is a triangle, the centroid G1 coincides with the center of the
Spieker circle, which is the incircle of the triangle formed by connecting
midpoint of each side of the original triangle P ([2, p. 249]). In this
case, the centroid G0 always coincides with the centroid G2(= G), where
G = (A+B+C)/3. Furthermore, the perimeter centroidG1 of P satisfies
G1 = G2 if and only if the triangle P is equilateral ([11, Theorem 2]).

In case P is a polygon, the geometric method to find the centroid
G2 of P was given in [4]. In [10], mathematical definitions of centroid
G2 of planar bounded domains were given. For higher dimensions, it
was shown that the centroid G0 of the vertices of a simplex in an n-
dimensional space always coincides with the centroid Gn of the simplex
([1, 11]).

Archimedes established some area properties of parabolic sections and
then formulated the centroid of parabolic sections ([12]). Using these
properties, some characterizations of parabolas were given in [5, 6, 8].

2. Preliminaries and Proposition 1.2

In this section, first of all we recall the centroids of a quadrangle. For
centroids of a quadrangle ABCD, we have the following, where we use
the notations given in Section 1.

Lemma 2.1. Let us denote by P the convex quadrangle ABCD. Then
we have the following.
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(1) The centroid G0 of P is given by

(2.1) G0 =
A+B + C +D

4
.

(2) The centroid G1 of P is given by

(2.2) G1 =
(l4 + l1)A+ (l1 + l2)B + (l2 + l3)C + (l3 + l4)D

2l
,

where we put l1 = AB, l2 = BC, l3 = CD, l4 = DA and l =
l1 + · · ·+ l4.

(3) If m = δ+β, where δ = 4ABC and β = 4ACD, then the centroid
G2 of P is given by

(2.3) G2 =
mA+ δB +mC + βD

3m
,

Proof. It is straightforward to prove (1), (2) and (3) or see [4, 9].

Now, we prove Proposition 1.2 stated in Section 1.

Proof of Proposition 1.2. Suppose that P denotes a quadrangle. We
denote by M the intersection point of diagonals of P . We may introduce
a coordinates system so that the point M is the origin and the vertices
of P are given by

(2.4) A(a, 0), B(b, c), C(−d, 0), D = −kB,

where a, c, d and k are positive real numbers. It follows from Lemma 2.1
that the centroids of P are given by

(2.5)

G0 =
1

4
(a+ b− d− kb, c− kc),

G2 =
1

3(k + 1)
((a+ b− d) + k(a− d− kb), (1− k2)c),

First, suppose that G0 = M . Then it follows from (2.5) that k = 1
and hence a = d. This shows that (1)⇒ (3).

Now, suppose that G2 = M . Then (2.5) implies that k = 1 and hence
a = d. This shows that (2)⇒ (3).

Note that every parallelogram satisfies G0 = M and G2 = M . This
completes the proof of Proposition 1.2.
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3. Theorems 1.5 and 1.6

In this section, we prove Theorems 1.5 and 1.6 stated in Section 1.
First, we prove Theorem 1.5 as follows.

Proof of Theorem 1.5. Since every parallelogram satisfies G1 = M ,
it suffices to show that (1)⇒ (2).

Suppose that P denotes a trapezoid. We denote byM the intersection
point of diagonals of P . We may introduce a coordinates system so that
the vertices of P are given by

(3.1) A(a, 0), B(b, k), C(c, 0), D(−a, 0),

where a and k are positive real numbers and b > c. The intersection
point M of diagonals of P is as follows.

(3.2) M =
a

2a+ b− c
(b+ c, 2k).

It follows from Lemma 2.1 that the perimeter centroid G1 of P is given
by

(3.3) G1 =
1

2l
((a+ b)l1 + (c− a)l3 + (b+ c)l2, k(l1 + 2l2 + l3)),

where we put by l the perimeter of P with

(3.4) l1 =
√

(a− b)2 + k2, l2 = b− c, l3 =
√

(a+ c)2 + k2, l4 = 2a.

Suppose that G1 = M . Then it follows from (3.2) and (3.3) that

(3.5) 4a(l1 + l2 + l3 + l4) = (l2 + l4)(l1 + 2l2 + l3).

Since l4 = 2a, (3.5) becomes

(3.6) 2l4(l1 + l2 + l3 + l4) = (l2 + l4)(l1 + 2l2 + l3).

Note that (3.6) can be rewritten as

(3.7) (l4 − l2){l1 + l3 + 2(l2 + l4)} = 0,

which shows that l2 = l4. Hence we see that (1)⇒ (2). This completes
the proof of Theorem 1.5.

We now prove Theorem 1.6 as follows.

Proof of Theorem 1.6. Since every parallelogram satisfies G1 = M ,
it suffices to show that (1)⇒ (2).

Suppose that P denotes a quadrangle with a pair of opposite edges
of equal length. We denote by M the intersection point of diagonals
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of P . Using similarity transformation if necessary, we may introduce a
coordinates system so that the vertices of P are given by

(3.8) A(x, y), B(0, a), C(−1, 0), D(0,−b),

where a, b and x are positive real numbers. The intersection point M of
diagonals of P is as follows.

(3.9) M =
1

x+ 1
(0, y).

It follows from Lemma 2.1 that the perimeter centroid G1 of P is given
by
(3.10)

G1 =
1

2l
(x(l1 + l4)− (l2 + l3), y(l1 + l4) + a(l1 + l2)− b(l3 + l4)),

where we put by l the perimeter of P with
(3.11)

l1 =
√
x2 + (y − a)2, l2 =

√
a2 + 1, l3 =

√
b2 + 1, l4 =

√
x2 + (y + b)2.

Since P has a pair of opposite edges of equal length, we may assume
that

(3.12) l4 = l2.

Now, suppose that G1 = M . Then it follows from (3.9) and (3.10)
that

(3.13) l1 + l4 =
1

x
(l2 + l3)

and

(3.14) al1 − bl4 =
l2
x

(y − ax) +
l3
x

(y + bx).

Combining (3.12) with (3.13), we get

(3.15) l1 =
1− x
x

l2 +
1

x
l3.

Substituting l4 and l1 in (3.12) and (3.15) respectively into (3.14), we
obtain

(3.16) (y + bx− a)(l2 + l3) = 0,

which implies that y = −bx + a, and hence AB is parallel to CD.
This shows that the quadrangle P is a trapezoid. Thus, Theorem 1.5
completes the proof of Theorem 1.6.
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4. Circumscribed quadrangles and others

In this section, first of all, we prove Theorem 1.7 stated in Section 1
as follows.

Proof of Theorem 1.7. Note that for a circumscribed quadrangle we
have (2)⇔ (3). Hence, as in the proof of Theorem 1.6 it suffices to show
that (1)⇒ (3).

Suppose that P denotes a circumscribed quadrangle. We denote by
M the intersection point of diagonals of P . By a suitable similarity
transformation if necessary, we may introduce a coordinates system so
that the vertices of P are given by

(4.1) A(x, y), B(0, a), C(−1, 0), D(0,−b),

where a, b and x are positive real numbers. Without loss of generality,
we may assume that a ≥ b.

The intersection point M of diagonals of P is as follows.

(4.2) M =
1

x+ 1
(0, y).

It follows from Lemma 2.1 that the perimeter centroid G1 of P is given
by
(4.3)

G1 =
1

2l
(x(l1 + l4)− (l2 + l3), y(l1 + l4) + a(l1 + l2)− b(l3 + l4)),

where we put by l the perimeter of P with
(4.4)

l1 =
√
x2 + (y − a)2, l2 =

√
a2 + 1, l3 =

√
b2 + 1, l4 =

√
x2 + (y + b)2.

Since P is a circumscribed quadrangle, we get

(4.5) l1 − l4 = l2 − l3.

Now, suppose that G1 = M . Then it follows from (4.2) and (4.3)
that

(4.6) l1 + l4 =
1

x
(l2 + l3)

and

(4.7) al1 − bl4 =
l2
x

(y − ax) +
l3
x

(y + bx).

It follows from (4.5) and (4.6) that

(4.8) 2l1 =
x+ 1

x
l2 +

1− x
x

l3
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and

(4.9) 2l4 =
1− x
x

l2 +
x+ 1

x
l3.

By substituting l1 and l4 in (4.8) and (4.9) respectively into (4.7), we
get

(4.10) 2y(l2 + l3) = x{(3a+ b)l2 − (a+ 3b)l3}+ (a− b)(l2 + l3).

Squaring the both sides of (4.8) and (4.9) respectively, we obtain

(4.11) 2y = (a− b)x− 1

x
.

Finally, we substitute y in (4.11) into (4.10). Then we have

(4.12) x2{(3a+ b)l2 − (a+ 3b)l3} = (b− a)(l2 + l3).

Since a ≥ b, we have two cases as follows.

Case 1. a = b. Then we have l2 = l3 and hence it follows from (4.5)
that l1 = l4. Furthermore, we get from (4.7) that y = 0. Together with
(4.6), this shows that x = 1. Hence, the quadrangle P is a rhombus.

Case 2. a > b. Then we have l2 > l3 and 3a+b > a+3b. Hence the left
side of (4.12) is positive. However the right side of (4.12) is negative,
which is a contradiction.

Summarizing the above cases, we see that the quadrangle P is a
rhombus, which shows that (1) ⇒ (3). This completes the proof of
Theorem 1.7.

Finally, we state some characterization theorems which can be proved
in a similar argument as in the proof of Theorem 1.7. We will omit the
proofs of them.

Theorem 4.1. For a quadrangle P with a pair of adjacent edges of
equal length, the following are equivalent.

(1) P satisfies G1 = M .

(2) P is a parallelogram.

(3) P is a rhombus.

Theorem 4.2. Suppose that a quadrangle P has two pairs of adjacent
edges such that the total length of a pair equals to that of the other
pair. Then the following are equivalent.

(1) P satisfies G1 = M .



Perimeter centroids and circumscribed quadrangles 135

(2) P is a parallelogram.
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