References
- Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2014. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5:321.
- Amaral, A. M., Carvalho, S. A., Silva, L. F. C. and Machado, M. A. 2010. Reaction of genotypes of citrus species and varieties to Xanthomonas citri subsp. citri under greenhouse conditions. J. Plant Pathol. 92:519-524.
- Bajpai, V. K., Kang, S. C., Park, E., Jeon, W. T. and Baek, K. H. 2011. Diverse role of microbially bioconverted product of cabbage (Brassica oleracea) by Pseudomonas syringe pv. T1 on inhibiting Candida species. Food Chem. Toxicol. 49:403-407. https://doi.org/10.1016/j.fct.2010.11.015
- Behlau, F., Jones, J. B., Myers, M. E. and Graham, J. H. 2012. Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. Eur. J. Plant Pathol. 132:259-270. https://doi.org/10.1007/s10658-011-9870-7
- Blondelle, S. E. and Lohner, K. 2000. Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55:74-87. https://doi.org/10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-S
- Chiou, C. S. and Jones, A. L. 1993. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175:732-740. https://doi.org/10.1128/jb.175.3.732-740.1993
- Choi, J., Baek, K. H. and Moon, E. 2014. Antimicrobial effects of a hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis. Plant Pathol. J. 30:245-253. https://doi.org/10.5423/PPJ.OA.02.2014.0011
- Choi, J. and Moon, E. 2009. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 19:792-802. https://doi.org/10.4014/jmb.0809.497
- Gordon, Y. J., Romanowski, E. G. and McDermott, A. M. 2005. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30:505-515. https://doi.org/10.1080/02713680590968637
- Han, H. S., Koh, Y. J., Hur, J. S. and Jung, J. S. 2004. Occurrence of the strA-strB streptomycin resistance genes in Pseudomonas species isolated from kiwifruit plants. J. Microbiol. 42:365-368.
- Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1:156-164. https://doi.org/10.1016/S1473-3099(01)00092-5
- Hong, S. Y., Oh, J. E., Kwon, M., Choi, M. J., Lee, J. H., Lee, B. L., Moon, H. M. and Lee, K. H. 1998. Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob. Agents Chemother. 42:2534-2541.
- Hyun, J. W., Kim, H. J., Yi, P. H., Hwang, R. Y. and Park, E. W. 2012. Mode of action of streptomycin resistance in the citrus canker pathogen (Xanthomonas smithii subsp. citri) in Jeju Island. Plant Pathol. J. 28:207-211. https://doi.org/10.5423/PPJ.2012.28.2.207
- Koh, Y. J., Kim, G. H., Koh, H. S., Lee, Y. S., Kim, S. C. and Jung, J. S. 2012. Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. Plant Pathol. J. 28:423-427. https://doi.org/10.5423/PPJ.NT.05.2012.0061
- Levin, B. R., Perrot, V. and Walker, N. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154:985-997.
- Li, J. and Wang, N. 2011. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 12:381-396. https://doi.org/10.1111/j.1364-3703.2010.00681.x
-
Liu, Z., Brady, A., Young, A., Rasimick, B., Chen, K., Zhou, C. and Kallenbach, N. R. 2007. Length effects in antimicrobial peptides of the
$(RW)_n$ series. Antimicrob. Agents Chemother. 51:597-603. https://doi.org/10.1128/AAC.00828-06 - Loper, J. E., Henkels, M. D., Roberts, R. G., Grove, G. G., Willet, M. J. and Smith, T. J. 1991. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis. 75:287-290. https://doi.org/10.1094/PD-75-0287
- Maroti, G., Kereszt, A., Kondorosi, E. and Mergaert, P. 2011. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 162:363-374. https://doi.org/10.1016/j.resmic.2011.02.005
- Moller, W. J., Schroth, M. N. and Thomson, S. V. 1981. The scenario of fire blight and streptomycin resistance. Plant Dis. 65:563-568. https://doi.org/10.1094/PD-65-563
- Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodivers. 5:1225-1237. https://doi.org/10.1002/cbdv.200890111
- Sharma, A., Bajpai, V. K. and Baek, K. H. 2013. Determination of antibacterial mode of action of Allium sativum essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters. J. Food Saf. 33:197-208. https://doi.org/10.1111/jfs.12040
- Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210. https://doi.org/10.20506/rst.31.1.2104
- Strom, M. B., Haug, B. E., Skar, M. L., Stensen, W., Stiberg, T. and Svendsen, J. S. 2003. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem. 46:1567-1570. https://doi.org/10.1021/jm0340039
- Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34 Suppl 3:S107-S110. https://doi.org/10.1086/340247
- Zhang, L., Parente, J., Harris, S. M., Woods, D. E., Hancock, R. E. and Falla, T. J. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 49:2921-2927. https://doi.org/10.1128/AAC.49.7.2921-2927.2005
Cited by
- Tryptophan-Rich and Proline-Rich Antimicrobial Peptides vol.23, pp.4, 2018, https://doi.org/10.3390/molecules23040815