DOI QR코드

DOI QR Code

Binding Interaction Analysis of Neuromedin U Receptor 1 with the Native Protein Neuromedin U

  • 투고 : 2017.02.01
  • 심사 : 2017.03.25
  • 발행 : 2017.03.30

초록

Neuromedin, a neuropeptide, which is involved in various functions that include contractile activity on smooth muscle, controlling the blood flow and ion transport in the intestine, increased blood pressure and regulation of adrenocortical function. It is involved in the pathophysiology of various immune mediated inflammatory diseases like asthma. In this study, we have performed protein-protein docking analysis of neuromedin U - neuromedin U receptor 1 complex. We have developed homology models of neuromedin U, and selected a reliable model using model validation. The model was docked with the receptor model, to analyse the crucial interactions of the complex. This study could be helpful as a tool in developing novel and potent drugs for the diseases related with neuromedin U receptor 1.

키워드

참고문헌

  1. R. Raddatz, A. E. Wilson, R. Artymyshyn, J. A. Bonini, B. Borowsky, L. W. Boteju, S. Zhou, E. V. Kouranova, R. Nagorny, M. S. Guevarra, M. Dai, G. S. Lerman, P. J. Vaysse, T. A. Branchek, C. Gerald, C. Forray, and N. Adham. "Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system", J. Biol. Chem., Vol, 275, pp. 32452-32459, 2000. https://doi.org/10.1074/jbc.M004613200
  2. A. D. Howard, R. Wang, S. S. Pong, T. N. Mellin, A. Strack, X. M. Guan, Z. Zeng, D. L. Williams Jr, S. D. Feighner, C. N. Nunes, B. Murphy, J. N. Stair, H. Yu, Q. Jiang, M. K. Clements, C. P. Tan, K. K. McKee, D. L. Hreniuk, T. P. McDonald, K. R. Lynch, J. F. Evans, C. P. Austin, C. T. Caskey, L. H. Van der Ploeg, and Q. Liu, "Identification of receptors for neuromedin U and its role in feeding", Nature, Vol. 406, pp. 70-74, 2000. https://doi.org/10.1038/35017610
  3. S. Budhiraja and A. Chugh, "Neuromedin U: physiology, pharmacology and therapeutic potential", Fund. Clin. Pharmacol., Vol. 23, pp. 149-157, 2009. https://doi.org/10.1111/j.1472-8206.2009.00667.x
  4. P. J. Brighton, P. G. Szekeres, and G. B. Willars, "Neuromedin U and Its Receptors: Structure, Function, and Physiological Roles", Pharmacol. Rev., Vol. 56, pp. 231-248. 2004. https://doi.org/10.1124/pr.56.2.3
  5. J. Ballesta, F. Carlei, A. E. Bishop, J. H. Steel, S. J. Gibson, M. Fahey, R. Hennessey, J. Domin, S. R. Bloom, and J. M. Polak, "Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal-tract and brain of the rat", Neuroscience, Vol. 25, pp. 797-816, 1988. https://doi.org/10.1016/0306-4522(88)90037-1
  6. C. Austin, M. Oka, K. A. Nandha, S. Legon, N. Khandannia, G. Lo, and S. R. Bloom, "Distribution and developmental pattern of neuromedin-U expression in the rat gastrointestinal-tract", J. mol. Endocrinol., Vol. 12, pp. 257-263, 1994. https://doi.org/10.1677/jme.0.0120257
  7. A. Inui, "Feeding and body-weight regulation by hypothalamic neuropeptides-mediation of the actions of leptin", Trends neurosci., Vol. 22, pp. 62-67, 1999. https://doi.org/10.1016/S0166-2236(98)01292-2
  8. T. R. Ivanov, C. B. Lawrence, P. J. Stanley, and S. M. Luckman. "Evaluation of neuromedin U actions in energy homeostasis and pituitary function", Endocrinology, Vol. 143, pp. 3813-3821, 2002. https://doi.org/10.1210/en.2002-220121
  9. M. Nakazato, R. Hanada, N. Murakami, Y. Date, M. S. Mondal, M. Kojima, H. Yoshimatsu, K. Kangawa, and S. Matsukura, "Central effects of neuromedin U in the regulation of energy homeostasis", Biochem. Bioph. Res. Co., Vol. 277, pp. 191-194. 2000. https://doi.org/10.1006/bbrc.2000.3669
  10. M. Moriyama, T. Sato, H. Inoue, S. Fukuyama, H. Teranishi, K. Kangawa, T. Kano, A. Yoshimura, and M. Kojima, "The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells", J. Exp. Med., Vol. 202, pp. 217-224, 2005. https://doi.org/10.1084/jem.20050248
  11. N. Minamino, K. Kangawa, and H. Matsuo, "Neuromedin-U-8 and neuromedin-U-25 - novel uterus stimulating and hypertensive peptides identified in porcine spinal-cord", Biochem. Bioph. Res. Co., Vol. 130, pp. 1078-1085, 1985. https://doi.org/10.1016/0006-291X(85)91726-7
  12. N. Minamino, T. Sudoh, K. Kangawa, and H. Matsuo, "Neuromedins: novel smooth-muscle stimulating peptides identified in porcine spinal-cord", Peptides, Vol. 6, pp. 245-248, 1985. https://doi.org/10.1016/0196-9781(85)90381-X
  13. M. S. Mondal, Y. Date, N. Murakami, K. Toshinai, T. Shimbara, K. Kangawa, and M. Nakazato, "Neuromedin U acts in the central nervous system to inhibit gastric acid secretion via CRH system", Am. J. Physiol.-Gastr. L., Vol. 284, pp. G963-G969. 2003. https://doi.org/10.1152/ajpgi.00218.2002
  14. G. C. Baker, J. J. Smith, and D. A. Cowan, "Review and re-analysis of domain-specific 16S primers", J. Microbiol. Meth., Vol. 55, pp. 541-555, 2003. https://doi.org/10.1016/j.mimet.2003.08.009
  15. D. Xu and Y. Zhang, "Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field", Proteins, Vol. 80, pp. 1715-1735, 2012.
  16. S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by C${\alpha}$ geometry: $\Phi$, $\Psi$ and C${\beta}$ deviation", Proteins., Vol. 50, pp. 437-450, 2002.
  17. J. U. Bowie, R. Lüthy, and D. Eisenberg, "A method to identify protein sequences that fold into a known three-dimensional structure", Science, Vol. 253, pp. 164-170, 1991. https://doi.org/10.1126/science.1853201
  18. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions", Protein Sci. Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916
  19. M. Wiederstein and M. J. Sippl, "ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins", Nucleic Acids Res., Vol. 35, pp. W407-W410, 2007. https://doi.org/10.1093/nar/gkm290
  20. S. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho, "ClusPro: an automated docking and discrimination method for the prediction of protein complexes", Bioinformatics, Vol. 20, pp. 45-50, 2014.
  21. S. Comeau, D. Gatchell, S. Vajda, and C. Camacho, "ClusPro: a fully automated algorithm for proteinprotein docking", Nucleic Acids Res., Vol. 32, pp. 96-99, 2014.
  22. D. Kozakov, D. Beglov, T. Bohnuud, S. E. Mottarella, B. Xia, D. R. Hall, and S. Vajda, "How good is automated protein docking?", Proteins, Vol. 81, pp. 2159-2166, 2013. https://doi.org/10.1002/prot.24403
  23. M. F. Lensink, and S. J. Wodak "Docking, scoring, and affinity prediction in CAPRI", Proteins, Vol. 81, pp. 2082-2095, 2013. https://doi.org/10.1002/prot.24428
  24. D. Kozakov, R. Brenke, S. R. Comeau, and S. Vajda, "PIPER: An FFT-based protein docking program with pairwise potentials", Proteins, Vol. 65, pp. 392-406, 2006. https://doi.org/10.1002/prot.21117