DOI QR코드

DOI QR Code

A Comparison of the Microbial Diversity in Korean and Chinese Post-fermented Teas

한국과 중국 미생물 발효차의 미생물 군집분석 및 비교

  • Kim, Byung-Hyuk (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jang, Jong-Ok (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Joa, Jae-Ho (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Jin-Ah (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Song, Seung-Yeob (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lim, Chan Kyu (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Chun Hwan (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jung, Young Bin (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Seong, Ki-Cheol (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Hee-Sik (Cell Factory Research Center, KRIBB) ;
  • Moon, Doo-Gyung (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA)
  • 김병혁 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 장종옥 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 좌재호 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김진아 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 송승엽 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 임찬규 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김천환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 정영빈 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 성기철 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김희식 (한국생명공학연구원 세포공장연구센터) ;
  • 문두경 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2017.02.28
  • Accepted : 2017.03.23
  • Published : 2017.03.28

Abstract

Tea is the most popular beverage in the world. The three main types are green, black, and post-fermented. Post-fermented teas are produced by the microbial fermentation of sun-dried green tea leaves (Camellia sinensis). In this study, the composition of the bacterial communities involved in the production of traditional oriental post-fermented teas (Korean algacha, dancha, and Chinese pu-erh) were investigated using 16S rRNA gene analysis. The dominant microorganisms present in the post-fermented teas included the ${\alpha}$-proteobacteria Rhodobacteraceae and Sphingomonas, and the ${\gamma}$-proteobacteria Pantoea. Cluster analysis confirmed that the microbial populations present in both Korean and Chinese post-fermented teas grouped into the same class. Interestingly, the dominant microorganism present in the Korean post-fermented teas was a bacterium, while for the Chinese post-fermented tea, it was a fungus.

차는 세계적으로 인기있는 음료로서, 그 종류는 불발효차(녹차), 반발효차(우롱차), 완전발효차(홍차), 후발효차 등으로 구분된다. 후발효차는 차나무(Camellia sinensis)의 잎을 미생물 발효과정을 거쳐 생산된다. 본 연구에서 한국 후발효차(알가차, 단차)와 중국 후발효차(보이차 2종)에 우점하는 미생물 분석을 위해 16S rRNA 유전자를 이용하였다. 후발효차에 우점하는 미생물은 ${\alpha}$-proteobacteria에 속하는 Rhodobacteraceae와 Sphingomonas, ${\gamma}$-proteobacteria에 속하는 Pantoea가 우점하였다. 미생물 군집 cluster 분석결과, 한국 후발효차와 중국 후발효차는 다르게 분류됨을 확인하였다. 또한, 매우 흥미롭게도 한국 후발효차는 미생물이 우점하였고 중국 후발효차는 곰팡이가 우점하는 것으로 분석되었다.

Keywords

References

  1. Ho CT, Lin JK, Shahidi F. 2008. Tea and tea products: chemistry and health-promoting properties. CRC press, Boca Raton.
  2. Zaveri NT. 2006. Green tea and its polyphenolic catechins: medicinal used in cancer and noncancer application. Life Sci. 78: 2073-2080. https://doi.org/10.1016/j.lfs.2005.12.006
  3. Basu A, Lucas EA. 2007. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 65: 361-375. https://doi.org/10.1111/j.1753-4887.2007.tb00314.x
  4. Weinreb O, Amit T, Mandel S, Youdim MB. 2009. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Gene Nutr. 4: 283-296. https://doi.org/10.1007/s12263-009-0143-4
  5. Yang CS, Wang X, Lu G, Picinich SC. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 9: 429-439. https://doi.org/10.1038/nrc2641
  6. Shon MY, Kim SH, Nam SH, Park SK, Sung NJ. 2004. Antioxidant activity of Korean green and fermented tea extracts. J. Life Sci. 14: 920-924. https://doi.org/10.5352/JLS.2004.14.6.920
  7. Lv H-P, Zhang YJ, Lin Z, Liang YR. 2013. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 53: 608-618. https://doi.org/10.1016/j.foodres.2013.02.043
  8. Heo BG, Park YS, Chon SU, Lee SY, Cho JY, Gorinstein S. 2007. Antioxidant activity and cytotoxicity of methnol extracts from aerial partsw of Korean salad plants. BioFactors. 30: 79-89. https://doi.org/10.1002/biof.5520300202
  9. Zhang L, Zhang ZZ, Zhou YB, Ling TJ, Wan XC. 2013. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 53: 600-607. https://doi.org/10.1016/j.foodres.2013.01.016
  10. Chen YS, Liu BL, Chang YN. 2010. Bioactivities and sensory evaluation of Pu-erh teas made from three tea liaves in an imporved pile fermentation process. J. Biosci. Bioeng. 109: 557-563. https://doi.org/10.1016/j.jbiosc.2009.11.004
  11. Zhao M, Xiao W, Ma Y, Sun T, Yuan W, Tang N, et al. 2013. Sturcture and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library. World J. Microbiol. Biotechnol. 29: 1877-1884. https://doi.org/10.1007/s11274-013-1351-z
  12. Zhang W, Yang R, Fang W, Yan L, Lu J, Sheng J, Lv J. 2016. Characterization of thermohilic fungal community associated with pile fermentation of Pu-erh tea. Int. J. Food Microbiol. 227: 29-33. https://doi.org/10.1016/j.ijfoodmicro.2016.03.025
  13. Abe M, Takaoka N, Idemoto Y, Takagi C, Imai T, Nakasaki K. 2008. Characteristic fungi observed in the fermentation process for Puer tea. Int. J. Food Microbiol. 124: 199-203. https://doi.org/10.1016/j.ijfoodmicro.2008.03.008
  14. Zhu Y, Luo Y, Wang P, Zhao M, Li L, Hu X, Chen F. 2016. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chem. 194: 643-649. https://doi.org/10.1016/j.foodchem.2015.08.054
  15. Kim BH, Baek KH, Cho DH, Sung Y, Ahn CY, Oh HM, et al. 2009. Analysis of microbial community during the anaerobic dechlorination of tetrachloroethylene (PCE) in stream of Gimpo and Inchon areas. Kor. J. Microbiol. 45: 140-147.
  16. Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. 2014. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass & Bioenergy. 69: 95-105. https://doi.org/10.1016/j.biombioe.2014.07.015
  17. Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, Oh H-M, Kim H-S. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578-585. https://doi.org/10.1016/j.biortech.2014.10.159
  18. Kim BH, Baek KH, Cho DH, Sung Y, Koh SC, Ahn CY, et al. 2010. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnol. Lett. 32: 1829-1835. https://doi.org/10.1007/s10529-010-0381-y
  19. Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  20. Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  21. Jaspers E, Nauhaus K, Cypionka H, Overmann J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36: 153-164. https://doi.org/10.1111/j.1574-6941.2001.tb00835.x
  22. Ishii K, Fukui M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753-3755. https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  23. Forney LJ, Zhou X, Brown CJ. 2004. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol. 7: 210-220. https://doi.org/10.1016/j.mib.2004.04.015
  24. Lee JW, Kim BH, Ahn CY, Kim HS, Yoon BD, Oh HM. 2005. Analysis of microbial community during the anaerobic dechlorination of Perchloroethylene and Trichloroethylene. Korean J. Microbiol. 41: 281-286.
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  26. Murray AE, Hollibaugh JT, Orrego C. 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel elctrophoresis of 16s rRNA fragments. Appl. Environ. Microbiol. 62: 2676-2680.
  27. Nakayama T, Watanabe S, Mitsui K, Uchida H, Inouye I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55. https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  28. Kim BH, Ramanan R, Cho DH, Choi GG, La HJ, Ahn CY, et al. 2012. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One. 7: e37770. https://doi.org/10.1371/journal.pone.0037770
  29. Cremonesi L, Firpo S, Ferrari M, Righetti PG, Gelfi C. 1997. Double-gradient DGGE for optimized detection of DNA point mutations. BioTechniques. 22: 326-330.
  30. Petri R, Imhoff JF. 2001. Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method. Polar Biol. 2001: 24.
  31. Scarpellini P, Braglia S, Carrera P, Cedri M, Cichero P, Colombo A, et al. 1999. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob. Agents Chemother. 43: 2550-2554.
  32. Baik KS, Seong CN, Hwang YM, Kim GA, Lee NR, Kim D, et al. 2012. Micorbial diversity of Ddek cha using DNA sequence analysis. J. Korean Tea Soc. 18: 86-91.
  33. Shim HJ, Cho JY, Moon JH, Kim SJ, Kim D, Shibn KH, Park KH. 2013. Changes of bacterial communites in microbial-fermented tea during fermentation. J. Korean Tea Soc. 19: 91-98.
  34. Zeida M, Wieser M, Yoshida T, Sugio T, Nagasawa T. 1998. Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T71. Appl. Environ. Microbiol. 64: 4743-4747.
  35. Zhao Y, Zhong GF, Yang XP, Hu XM, Mao DB, Ma YP. 2015. Bioconversion of lutein to form aroma compounds by Pantoea dispersa. Biotechnol. Lett. 37: 1687-1692. https://doi.org/10.1007/s10529-015-1844-y
  36. Adriaenssens EM, Guerrero LD, Makhalanyane TP, Aislabie JM, Cowan DA. 2014. Draft genome sequence of the aromatic hydrocarbon-degrading bacterium Sphingobium. sp. strain Ant17, isolated from antarctic soil. Genome Announc. 2: e00212.
  37. Aylward FO, McDonald BR, Adams SN, Valenzuela A, Schmidt Ra, Goodwin LA, et al. 2013. Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl. Environ. Microbiol. 79: 3724-3733. https://doi.org/10.1128/AEM.00518-13
  38. Yi L, Su G, Hu G, Peng Q. 2016. Diversity study of microbial community in bacon using metagenomic analysis. J. Food Saf. DOI 10.1111/jfs.12334.
  39. Nam YD, Park SI, Lim SI. 2012. Microbial composition of the Korean traditional food "kochujang" analyzed by a massive sequencing technique. J. Food Sci. 77: M250-M256. https://doi.org/10.1111/j.1750-3841.2012.02656.x
  40. Peng Q, Yang Y, Guo Y, Han Y. 2015. Analysis of bacterial diversity during acetic acid fermentation of Tianjin Duliu aged vinegar by 454 pyrosequencing. Curr. Microbiol. 71: 195-203. https://doi.org/10.1007/s00284-015-0823-9
  41. Kim MJ, Kwak HS, Jung HY, Kim SS. 2016. Microbial communities related to sensory attribbutes in Korean fermented soy bean paste (doenjang). Food Res. Int. 89: 724-732. https://doi.org/10.1016/j.foodres.2016.09.032
  42. Koh SC, Choi JH, Kim BH, Kim SE. 2008. Effect of quartz porphyry on growth of creeping bentgrss (Agrostis stolohifera) and soil bacterial community structures. Korean J. Microbiol. 44: 317-325.
  43. Tian J, Zhu Z, Wu B, Wang L, Liu X. 2013. Bacterial and fungal communities in Pu'er tea samples of different ages. J. Food Sci. 78: M1249-M1256. https://doi.org/10.1111/1750-3841.12218
  44. Zhao ZJ, Tong HR, Zhou L, Wang EX, Liu QJ. 2010. Fungal colonization of Pu-erh in Yunnan. J. Food Saf. 30: 769-784. https://doi.org/10.1111/j.1745-4565.2010.00240.x

Cited by

  1. 한국 전통 미생물발효차(청태전)의 미생물 군집분석 vol.53, pp.3, 2017, https://doi.org/10.7845/kjm.2017.7049
  2. Evaluation of the Usefulness of the Fermented Thistle (Cirsium japonicum ) with Lactobacillus rhamnosus BHN-LAB105 for Antioxidative and Whitening Effects vol.17, pp.1, 2019, https://doi.org/10.20402/ajbc.2018.0250
  3. Bioconversion of glycosides isoflavones to aglycone isoflavones by Lactobacillus rhamnosus BHN-LAB 76 under anaerobic conditions vol.26, pp.2, 2017, https://doi.org/10.11002/kjfp.2019.26.2.148
  4. Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가 vol.29, pp.5, 2017, https://doi.org/10.5352/jls.2019.29.5.545
  5. Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과 vol.29, pp.11, 2019, https://doi.org/10.5352/jls.2019.29.11.1208