DOI QR코드

DOI QR Code

교반속도 최적화를 통한 Kluyveromyces marxianus 36907-FMEL1로 부터 고온에서의 자일리톨 생산성 증진

Xylitol Production by Kluyveromyces marxianus 36907-FMEL1 at High Temperature was Considerably Increased through the Optimization of Agitation Conditions

  • Kim, Jin-Seong (Department of Bioengineering and Technology, Kangwon National University) ;
  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Jang, Seung-Won (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hong, Eock Kee (Department of Bioengineering and Technology, Kangwon National University) ;
  • Shin, Won Cheol (Department of Bioengineering and Technology, Kangwon National University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
  • 투고 : 2016.11.08
  • 심사 : 2017.01.26
  • 발행 : 2017.03.28

초록

최근 모균주인 K. marxianus ATCC 36907 보다 xylose reductase의 활성이 증대된 돌연변이 K. marxianus 36907-FMEL1 균주를 개발하였다. 본 연구에서는 효율적인 xylitol의 생산을 위해 발효기를 이용하여 교반속도에 따른 효과를 확인하였다. $30^{\circ}C$ 조건에서 발효를 진행한 결과 K. marxianus 36907-FMEL1 균주는 400 rpm의 교반속도에서 가장 높은 수율 (0.57 g/g)과 생산성($0.64g{\cdot}l^{-1}{\cdot}h^{-1}$)을 확인할 수 있었다. 흥미롭게도 온도 조건을 $40^{\circ}C$로 증가하여 발효를 진행한 결과 agitation 조건 최적화를 통해 수율과 생산성이 각각 21% (0.64 g/g)와 58% ($0.90g{\cdot}l^{-1}{\cdot}h^{-1}$) 증가하였다.

Recently, we isolated the mutant Kluyveromyces marxianus 36907-FMEL1, which demonstrated improved xylose reductase activity as compared to the parental strain, K. marxianus ATCC 36907. Effects of agitation conditions on xylitol production were verified using a bioreactor system. Under an agitation speed of 400 rpm, K. marxianus 36907-FMEL1 exhibited the highest xylitol yield (0.57 g/g) and productivity ($0.64g{\cdot}l^{-1}{\cdot}h^{-1}$) at $30^{\circ}C$. When the fermentation temperature was increased to $40^{\circ}C$, interestingly, xylitol yield and productivity were found to be increased to 21% (0.64 g/g) and 58% ($0.90g{\cdot}l^{-1}{\cdot}h^{-1}$), respectively, under the optimized agitation conditions.

키워드

참고문헌

  1. da Silva DDV, de Arruda PV, Vicente FMCF, Sene L, da Silva SS, andde Almeida Felipe MdG. 2015. Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann. Microbiol. 65: 687-694. https://doi.org/10.1007/s13213-014-0907-y
  2. Fonseca G, Heinzle E, Wittmann C, Gombert A. 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354. https://doi.org/10.1007/s00253-008-1458-6
  3. Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
  4. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, et al. 2004. Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Department of Energy Washington DC. No. DOE/GO-102004-1992.
  5. Rodrigues RLB, Kenealy W, Jeffries T. 2011. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J. Ind. Microbiol. Biotechnol. 38: 1649-1655. https://doi.org/10.1007/s10295-011-0953-4
  6. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, et al. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Nat. Biotechnol. 9: 1090-1095. https://doi.org/10.1038/nbt1191-1090
  7. Akinterinwa O, Cirino PC. 2009. Heterologous expression of dxylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 11: 48-55. https://doi.org/10.1016/j.ymben.2008.07.006
  8. Zhang J, Zhang B, Wang D, Gao X, Hong J. 2014. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour. Technol. 152: 192-201. https://doi.org/10.1016/j.biortech.2013.10.109
  9. Park JB, Kim JS, Jang SW, Hong E, Ha SJ. 2015. The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production. KSBB J. 30: 125-131. https://doi.org/10.7841/ksbbj.2015.30.3.125
  10. Jang SW, Kim JS, Park JB, Jung JH, Park CS, Shin WC, et al. 2015. Characterization of the starch degradation activity from newly isolated Rhizopus oryzae WCS-1 and mixed cultures with Saccharomyces cerevisiae for efficient ethanol production from starch. Food Sci. Biotechnol. 24: 1805-1810. https://doi.org/10.1007/s10068-015-0235-4
  11. Kim JS, Park JB, Jang SW, Ha SJ. 2015. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity. Appl. Biochem. Biotechnol. 176: 1975-1984. https://doi.org/10.1007/s12010-015-1694-z
  12. Rodrigues F, Ludovico P, Leao C. 2006. Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism, pp. 101-121. Biodiversity and Ecophysiology of Yeasts, Springe-Verlag, Heidelberg.
  13. Wilkins MR, Mueller M, Eichling S, Banat IM. 2008. Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem. 43: 346-350. https://doi.org/10.1016/j.procbio.2007.12.011
  14. Kumar S, Singh SP, Mishra IM, Adhikari DK. 2009. Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J. Ind. Microbiol. Biotechnol. 36: 1483-1489. https://doi.org/10.1007/s10295-009-0636-6
  15. Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J. 2013. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J. Ind. Microbiol. Biotechnol. 40: 305-316. https://doi.org/10.1007/s10295-013-1230-5
  16. Zhang J, Zhang B, Wang D, Gao X, Hong J. 2015. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour. Technol. 175: 642-645. https://doi.org/10.1016/j.biortech.2014.10.150

피인용 문헌

  1. 누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리 vol.47, pp.4, 2017, https://doi.org/10.4014/mbl.1902.02006