References
- da Silva DDV, de Arruda PV, Vicente FMCF, Sene L, da Silva SS, andde Almeida Felipe MdG. 2015. Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann. Microbiol. 65: 687-694. https://doi.org/10.1007/s13213-014-0907-y
- Fonseca G, Heinzle E, Wittmann C, Gombert A. 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354. https://doi.org/10.1007/s00253-008-1458-6
- Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
- Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, et al. 2004. Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Department of Energy Washington DC. No. DOE/GO-102004-1992.
- Rodrigues RLB, Kenealy W, Jeffries T. 2011. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J. Ind. Microbiol. Biotechnol. 38: 1649-1655. https://doi.org/10.1007/s10295-011-0953-4
- Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, et al. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Nat. Biotechnol. 9: 1090-1095. https://doi.org/10.1038/nbt1191-1090
- Akinterinwa O, Cirino PC. 2009. Heterologous expression of dxylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 11: 48-55. https://doi.org/10.1016/j.ymben.2008.07.006
- Zhang J, Zhang B, Wang D, Gao X, Hong J. 2014. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour. Technol. 152: 192-201. https://doi.org/10.1016/j.biortech.2013.10.109
- Park JB, Kim JS, Jang SW, Hong E, Ha SJ. 2015. The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production. KSBB J. 30: 125-131. https://doi.org/10.7841/ksbbj.2015.30.3.125
- Jang SW, Kim JS, Park JB, Jung JH, Park CS, Shin WC, et al. 2015. Characterization of the starch degradation activity from newly isolated Rhizopus oryzae WCS-1 and mixed cultures with Saccharomyces cerevisiae for efficient ethanol production from starch. Food Sci. Biotechnol. 24: 1805-1810. https://doi.org/10.1007/s10068-015-0235-4
- Kim JS, Park JB, Jang SW, Ha SJ. 2015. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity. Appl. Biochem. Biotechnol. 176: 1975-1984. https://doi.org/10.1007/s12010-015-1694-z
- Rodrigues F, Ludovico P, Leao C. 2006. Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism, pp. 101-121. Biodiversity and Ecophysiology of Yeasts, Springe-Verlag, Heidelberg.
- Wilkins MR, Mueller M, Eichling S, Banat IM. 2008. Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem. 43: 346-350. https://doi.org/10.1016/j.procbio.2007.12.011
- Kumar S, Singh SP, Mishra IM, Adhikari DK. 2009. Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J. Ind. Microbiol. Biotechnol. 36: 1483-1489. https://doi.org/10.1007/s10295-009-0636-6
- Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J. 2013. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J. Ind. Microbiol. Biotechnol. 40: 305-316. https://doi.org/10.1007/s10295-013-1230-5
- Zhang J, Zhang B, Wang D, Gao X, Hong J. 2015. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour. Technol. 175: 642-645. https://doi.org/10.1016/j.biortech.2014.10.150
Cited by
- 누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리 vol.47, pp.4, 2017, https://doi.org/10.4014/mbl.1902.02006