DOI QR코드

DOI QR Code

Effects of heat treatment temperature on the formation of MgB2 bulk superconductors prepared using MgB4 and Mg powder

  • Kim, S.H. (Korea Atomic Energy Research Institute) ;
  • Kang, W.N. (Sungkyunkwan University) ;
  • Lee, Y.J. (Korea Atomic Energy Research Institute) ;
  • Jun, B.H. (Korea Atomic Energy Research Institute) ;
  • Kim, C.J. (Korea Atomic Energy Research Institute)
  • Received : 2017.01.26
  • Accepted : 2017.02.21
  • Published : 2017.03.31

Abstract

The effects of the heat treatment temperature ($600^{\circ}C-1050^{\circ}C$) on the formation of $MgB_2$ and the superconducting properties have been examined. The self-synthesized $MgB_4$ and commercial Mg powders were used as raw materials for the formation of $MgB_2$. The superconducting critical temperatures ($T_cs$) of $MgB_2$ bulk superconductors prepared at $600^{\circ}C-850^{\circ}C$ were as high as 37-38 K regardless of the heat treatment temperature. However, because $MgB_4$ is more stable than $MgB_2$ at above $850^{\circ}C$, no superconducting signals were detected in the susceptibility-temperature curves of the samples prepared above $850^{\circ}C$. As for the critical current density ($J_c$), the sample heat-treated at a low temperature ($600^{\circ}C$) for a prolonged period (40 h) showed a Jc higher than those prepared at $650^{\circ}C-850^{\circ}C$ for a short period (1 h). The FWHM (full width at half maximum) result showed that the grain size of $MgB_2$ of the $600^{\circ}C$ sample was smaller than that of the other samples. The high $J_c$ of the $600^{\circ}C$sample is attributed to the presence of large numbers of grain boundaries, which can act as flux pinning centers of $MgB_2$.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  2. Y. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima, N. Koshizuka and M. Murakami, "Anisotropic superconducting properties of $MgB_2$ single crystals probed by in-plane electrical transport measurements," Phys. Rev., vol. 65, pp. 140501, 2002. https://doi.org/10.1103/PhysRevB.65.140501
  3. Zongqing Ma, Yongchang Liu, Liming Yu and Qian Zhao, "The accelerated formation of $MgB_2$ phase with high critical current density by Cu and SiC multidoping during the low-temperature sintering process," J. Appl. Phys., vol. 104, pp. 113917, 2008. https://doi.org/10.1063/1.3040703
  4. V. Grinenko, E. P. Krasnoperova , V. A. Stoliarova, A. A. Bush and B. P. Mikhajlov, "Superconductivity in porous $MgB_2$," Physics C, vol. 43, pp. 492-495, 2006.
  5. A. V. Pan, S. Zhou, H. Liu and S. Dou, "Properties of superconducting $MgB_2$ wires: in situ versus ex situ reaction technique," Supercond. Sci. Technol., vol. 16, pp. 639-644, 2003. https://doi.org/10.1088/0953-2048/16/5/317
  6. C. U. Jung, M. S. Park, M. S. Kim, J. H. Choi, W. N. Kang, H. P. Kim and S. I. Lee, "High-pressure sintering of highly dense $MgB_2$ and its unique pinning properties," Curr. Appl. Phys., vol. 1, pp. 327-331, 2001. https://doi.org/10.1016/S1567-1739(01)00031-1
  7. B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. Mcdougall, "Superconductivity of powder-in-tube $MgB_2$ wires," Supercond. Sci. Technol., vol. 14, pp. 193-199, 2001. https://doi.org/10.1088/0953-2048/14/4/304
  8. A. Tampieri, G. Celotti, S. Sprio, R. Caciuffo and D. Rinaldi, "Study of the sintering behavior of $MgB_2$ superconductor during hot-pressing," Physica C, vol. 400, pp. 97-104, 2004. https://doi.org/10.1016/S0921-4534(03)01310-8
  9. E. Martinez, L. A. Angurel and R. Navarro, "Study of Ag and Cu/$MgB_2$ powder-in-tube composite wires fabricated by In situ reaction at low temperature," Supercond. Sci. Technol., vol. 15, pp. 1043-1047, 2002. https://doi.org/10.1088/0953-2048/15/7/309
  10. B. H. Jun and C. J. Kim, "The effect of heat-treatment temperature on the superconducting properties of malic acid-doped $MgB_2$/Fe wire," Supercond. Sci. Technol., vol. 20, pp. 980-985, 2007. https://doi.org/10.1088/0953-2048/20/10/015
  11. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi and T. Kiyoshi, "The effects of sintering temperature on superconductivity in $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 448-451, 2007. https://doi.org/10.1088/0953-2048/20/5/007
  12. A. Yamamoto, J. I. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, "Improved critical current properties observed in $MgB_2$ bulk synthesized by low-temperature solid-state reaction," Supercond. Sci. Tehchnol., vol. 18, pp. 116-121, 2004.
  13. B.-H. Jun, N.-K. Kim, K.S. Tan and C.-J. Kim, "Enhanced critical current properties of in situ processed $MgB_2$ wires using milled boron powder and low temperature solid-state reaction," J. Alloys Compd., vol. 492, pp. 446-451, 2010. https://doi.org/10.1016/j.jallcom.2009.11.134
  14. A. Serquis, Y. T. Zhu, E. J. Peterson, J. Y. Coulter, D. E. Peterson, and F. M. Mueller, "Effect of lattice strain and defects on the superconductivity of $MgB_2$," Amer. Inst. phys. vol. 79, pp. 4399-4401, 2001.
  15. C. J. Kim, J. H. Yi, B. H. Jun, B. Y. You, S. D. Park and K. N. Choo, "Reaction-induced pore formation and superconductivity in in situ processed $MgB_2$ superconductors," Physica C., vol. 502, pp. 4-9, 2014. https://doi.org/10.1016/j.physc.2014.04.006
  16. K. L. Tan, K. P. Lim, A. S. Halim and S. K. Chen, "Enhanced critical current density in $MgB_2$ prepared by reaction of $MgB_4$ and Mg," Phys. Status Solidi A, vol. 210, No. 3, pp. 616-622, 2013. https://doi.org/10.1002/pssa.201228752
  17. D Nardelli, D Matera, M Vignolo, G Bovone, A. Palenzona, A. S. Siri and G. Grasso, "Large critical current density in $MgB_2$ wire using $MgB_4$ as precursor," Supercond. Sci. Technol., vol. 26, pp. 075010, 2013. https://doi.org/10.1088/0953-2048/26/7/075010
  18. A. Ito, A. Yamamoto, J. Shimoyama, H. Ogino and K. Kishio, "Synthesis of denser in situ $MgB_2$ bulks using $MgB_4$ precursor," IEEE Trans. Appl. Supercond., vol. 23, pp. 7101005, 2013. https://doi.org/10.1109/TASC.2013.2240035
  19. K. L. Tan, K. Y. Tan, K. P. Lim, S. A. Halim and S. K. Chen, "Synthesis of $MgB_2$ from $MgB_4$ through combinatorial solid state reaction routes," Solid state. Sci. Tech., vol. 19, pp. 15-19, 2011.
  20. J. Ishiwata, M. Muralidhar, K. Inoue and M. Murakami, "Effect of $MgB_4$ addition on the superconducting properties of polycrystalline $MgB_2$," Physics Procedia., vol. 65, pp. 69-72, 2015. https://doi.org/10.1016/j.phpro.2015.05.124
  21. K. S. Tan, B. H. Jun and C. J. Kim, "Superconducting properties of a $MgB_2$ bulk formed by using a $MgB_4$ + Mg Mixture," J. Korean Phys. Soc., vol. 54, No. 4, pp. 1626-1629, 2009. https://doi.org/10.3938/jkps.54.1626
  22. C. P. Bean, "Magnetization of high-field superconductors," Rev. Mod. Phys., vol. 36, pp. 31-39, 1964. https://doi.org/10.1103/RevModPhys.36.31
  23. P. Scherrer, "Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen," Nachr. Ges. Wiss. Gottingen, vol. 26, pp. 98-100, 1918.
  24. J. H. Yi , K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim , J. Joo and C. J. Kim, "Pore formation in in situ processed $MgB_2$ superconductors," Physica C, vol. 469, pp. 1192-1195, 2009. https://doi.org/10.1016/j.physc.2009.05.190

Cited by

  1. A novel gas–solid reaction process to synthesize low oxygen MgB2 powder using Mg vapour vol.32, pp.1, 2019, https://doi.org/10.1088/1361-6668/aaefa2
  2. Flux Pinning and Superconducting Properties of Bulk MgB2 with MgB4 Addition vol.22, pp.3, 2017, https://doi.org/10.1002/adem.201900750